操逼啊口爆啊rrr中途啊免费-中文字幕av网一区二区-中文字幕久久精品波多野结百度-国产三级视频在线观看

雙極性晶體管

二極管

ESD保護(hù)、TVS、濾波和信號(hào)調(diào)節(jié)ESD保護(hù)

MOSFET

氮化鎵場(chǎng)效應(yīng)晶體管(GaN FET)

絕緣柵雙極晶體管(IGBTs)

模擬和邏輯IC

汽車應(yīng)用認(rèn)證產(chǎn)品(AEC-Q100/Q101)

IAN50003 - Driving solenoids in automotive applications

There are a wide variety of solenoid drive circuit topologies, most of these use MOSFETs in various configurations . This interactive application note considers 4 driving modes.

Authors: Nandor Bodo, Andy Berry, Automotive Application Engineers, Manchester, UK

This interactive application note contains an embedded PartQuest Cloud simulation to augment the text.

To open the embedded simulation, simply hover over the simulation image. Left click anywhere in the graphic area once the central play button changes in colour from black to yellow. This opens the schematic in the PartQuest Cloud environment. See the interactive application note home page for more details on how to use the simulations. See accompanying application note: AN50003

Download AN50003

Solenoid principle of operation
Figure 1. Solenoid principle of operation

1. Introduction

Throughout the evolution of modern engineering electromagnetic devices have taken prevalence in changing electrical energy to mechanical energy or movement. Most commonly we think about motors for such applications, however the humble solenoid is used even more often, thanks to its simplicity of construction and ease of driving. Solenoid coils are typically found in relays, contactors, and valves.

In the automotive sector solenoids are used for a range of applications, from starting the engine to shifting the transmission. Solenoids are used to activate four-wheel drive system, fuel injection systems, locking the doors of the car and controlling the air flow in the vehicle's air conditioning system. The vast number of valves in the vehicle are also controlled by solenoids.

2. Solenoid operating principles

Consisting of a fixed coil and a movable core or slug (termed the armature) the solenoids are able to push, pull or even do both as the current through them changes direction. The armature is used to assert mechanical force to the driven system. The motion is usually reversed by a spring that is attached to the core. The armature movement changes the inductance of the coil, which in turn acts as an electromagnet. The magnetic force applied to the armature is proportional to the change of this inductance and the current flowing through the core, as shown in Fig. 1.

From the electrical viewpoint, the solenoid acts as an inductive component, consisting of multiple wound coils. The current flowing through them creates a magnetic field. The sluggish nature of this highly concentrated field creates a voltage (termed Electro Motive Force, EMF) that opposes change in the magnetic field, and therefore in the current as well. In this way as voltage is initially applied to the solenoid coil the current starts rising gradually. The magnetic field, and therefore the force applied to the armature rises until it reaches a point where it is large enough to move the armature in the desired direction.

Idealised Voltage and current waveforms
Figure 2. Idealised voltage and current waveforms

Because of this slow response, it is prudent to apply a high voltage to the solenoid at the start of its actuation to initiate a faster current response. As the armature starts moving, the solenoid’s inductance (as a function of the armature position) and back EMF (as a function of the armature speed) rise, limiting the rate of rise of the current.

Once the movement of the coil is mechanically prevented as it reaches its intended resting point, the back EMF diminishes. At this point the current continues to rise until only the coil resistance limits its value. This current can be quite high for the power supply, which is normally a battery in automotive applications

As the system has reached a mechanical steady state the amount of force needed to maintain this state is much lower than for moving the armature. Besides, the armature is usually part of a magnetic circuit with an air gap.

This air gap is closed by actuating the solenoid and moving the armature, therefore rendering the magnetic reluctance (equivalent for resistance in electric circuits) very small. This in turn allows the magnetic field flux (equivalent to current in electric circuits) to flow in abundance, increasing the applied force to the armature.

For the above reasons it is advisable to decrease the applied voltage to the solenoid after its armature has reached its intended position, to limit the applied power and avoid depleting the vehicle battery.

Idealised voltage and current waveforms are shown in Fig. 2.

Peak and hold current waveform
Figure 3. Peak and hold current waveform in a fuel injector application

3. Current regulated solenoid drives

A more recent approach to controlling solenoids uses current control as shown in Fig. 3.

The waveform is known as the “peak-and-hold” current waveform, predominantly used in Fuel Injection applications. Initially, the current is increased rapidly to a high value during the Boost Phase. The current can be allowed to reach high values at this stage, since it will provide the initial push for the armature to begin its journey. The slope of the current should be high and, therefore, the applied voltage should be high as well.

In the Peak Phase, for a time period sufficient for the armature to take its final position the current is held at a certain value. Then the current is reduced during the Bypass Phase. The rate of decrease of the current is dependent on the reverse voltage applied to the inductor in this phase. The current is set to a lower value during the Hold Phase. Therefore, the force applied to the armature is reduced to a level sufficient to hold the armature in place. The losses are also reduced since this current can be substantially lower than the one applied in the Peak Phase.

Finally, once the control signal is withdrawn, in the End of Injection Phase, the current is left to decay to zero, leaving the spring to return the armature to its initial position. Once again, the rate of inductor current decrease can be influenced by the voltage that appears across the inductor. At this instant, the speed of current decay might be important for timing reasons. If the current decays slowly it is hard to predict the instance when the force of the spring will prevail over the magnetic force, as the mechanical properties of the spring and the whole mechanical system of the solenoid might change over time. Furthermore, for the same reasons the speed of the armature cannot be guaranteed. For some time sensitive applications, such as internal combustion engine injector drive, such timing differences might prove to be crucial.

4. Discussion of simulation results

Four approaches to driving a current regulated solenoid are explored in simulations. The simulations had common control parts, for ease of comparison. The difference manifested in the power electronics driving the solenoid. The MOSFET driver logic relies on the current feedback being compared to its reference value. When the reference value is higher than the feedback, the MOSFET is switched at 1 kHz frequency. For the purposes of these simulations the solenoids were replaced by an inductor with 5 mH inductance.

Schematic of driver with freewheeling diode.
Figure 4. Schematic of driver with freewheeling diode

4.1. Solenoid driver with free-wheeling diode

This is the simplest and easiest way to drive a solenoid. The inductive energy of the solenoid decays through a diode up to the battery voltage. The schematic is shown on Fig. 4 and the solenoid current and its reference is shown in Fig. 5

When the reference signal is received, at 10 ms, both MOSFETs turn on to ensure maximal current increase in the Boost Phase. Once the peak reference current is reached, the high side MOSFET is switched so that it controls the current around this reference value, which is chosen to be 3 A in the simulation. When the MOSFET is turned on the applied voltage equals to the battery voltage; when the MOSFET is turned off the current circulates through the bottom MOSFET and the bottom diode. The voltage applied to the inductor is equal to the voltage drop on these two elements, i.e. it is very low.

Solenoid current waveform – free-wheeling topology
Figure 5. Solenoid current and reference waveforms –?free-wheeling?topology

After the target time of 10 ms for the Peak Phase has elapsed, at 20 ms, the reference is changed to 1.2 A. Again, the top MOSFET is used to regulate the current. After the Hold Phase, at 40 ms,both MOSFETs are turned off and the current free-wheels through the two diodes, making the effective reverse voltage almost equal to the battery voltage. Considering a simple inductor voltage/current relation, with a battery voltage of 12 V and 5 mH inductance the duration of the End of Injection phase can be calculated to be close to 0.5 ms.

(Eq 1) 

Both MOSFETs and diodes will need to withstand the battery voltage. Both MOSFETs and the top free-wheeling diode need to be rated to the reference Peak current, while the bottom free-wheeling diode conducts only the Hold current for a short amount of time. The dissipated energy was calculated for each component during the whole activation process. Comparison of the energies dissipated in each device for each topology can be found in Section 5. To obtain the power, the calculated energy value needs to be multiplied with the desired frequency of operation.

Compared to the other driver topologies, the free-wheeling driver is simple, has a low component count, but it is the slowest due to the inductor voltage being approximately equal to the battery voltage.

(Eq 2) 

4.2. Solenoid driver with MOSFET avalanching

Schematic of driver with avalanching MOSFET
Figure 6. Schematic of driver with avalanching MOSFET

In this case there is no free-wheeling diode and the back EMF of the solenoid forces the MOSFET into avalanche mode of operation. Its schematic is shown in Fig. 6.

The mode of operation is identical to the free-wheeling diode circuit at the start. However, in End of Injection Phase, when both MOSFETs are turned off, the inductor current has no way to free-wheel. Therefore, the inductor voltage is increased until it breaks down the bottom MOSFET and drives it into avalanche mode.

Avalanching inductor current and MOSFET voltage
Fig 7. Avalanching inductor current (top) and MOSFET voltage (bottom).

This voltage is substantially higher than the battery voltage that was applied in the case of the free-wheeling circuit. Therefore, the current will decay faster. A close look at the MOSFET avalanche voltage and current can be seen in Fig. 7.

Consulting the inductor equation, (Eq 1), once again, with a voltage of 68 V, the End of Injection phase duration is now closer to 0.1 ms: a five-fold reduction compared to the free-wheeling case.

Once again, all the components need to be rated above the battery voltage and the target peak current. However, the bottom MOSFET needs to be repetitive avalanche rugged. The energy dissipated in each component is compared in Section 5.

Due to the high voltage of avalanche compared to the battery voltage, this method decays and therefore releases the solenoid faster. However, the energy of the inductor is now dissipated in the MOSFET in the form of heat. Therefore, careful consideration of a MOSFET is needed to handle this energy.

4.3. Solenoid driver with active clamp

Schematic of driver with active clamp
Figure 8. Schematic of driver with active clamp

This option is very similar to avalanche operation. Here a Zener clamp is connected drain to gate of the MOSFET, as seen in Fig. 8.

Once again, the circuit behaviour is identical as with the free-wheeling and avalanche circuits.

However, at the End Of Injection Phase as both MOSFETs are turned off and the inductor voltage starts to increase towards the bottom MOSFET VDS breakdown, the Zener diode starts conducting and pulls the MOSFET gate up forcing it into its linear region.

The MOSFET then maintains the sum of the Zener diode breakdown voltage, the diode forward voltage and the gate-source threshold voltage from drain to source.

active clamp waveforms
Figure 9. MOSFET gate voltage (top), drain to source voltage (middle) and inductor current (bottom); active clamp topology

In the previous case the MOSFET intrinsic diode has broken down in avalanche mode. In this case the current flows through the MOSFET channel.

As the MOSFET is in its linear region with large current and large voltage applied to it, there is an increased chance of hotspots and thermal runaway occurring if conditions are met. During active clamp there are high energy charge carriers generated in close proximity to the MOSFET’s gate oxide. These carriers might be injected into the oxide and cause damage.

Over many active clamp cycles the oxide can wear out and cause parametric shift and ultimately device failure. Currently it is not recommended to use MOSFETs in repetitive active clamp. Alternatively, repetitive avalanche is recommended as the long term reliability during repetitive avalanche is better defined. Simulated waveforms of the circuit behaviour are shown in Fig. 9.

Schematic of driver with Boost converter
Fig 10. Schematic of driver with Boost converter

4.4. Solenoid driver with Boost converter

This is the most complicated topology, shown in Fig. 10, with the highest performance. A boost converter, often operating at an output voltage in the range of 60 V, is used to charge and discharge the solenoid quickly (five times faster with five times larger voltage) during the Boost Phase and End of Injection Phase.

During the Peak and Hold Phases the nominal battery voltage is switched, as in the previous cases. This allows for fast actuation of the solenoid, but also the energy from the solenoid is regenerated into the DC link capacitor of the boost converter.

The cost here is the additional components to make the boost circuit, the additional PCB board space and overall higher voltage rating of the components. The added component count is reflected in the losses. However, it needs to be considered that the MOSFETs used in the Boost simulation are of lower current rating.

Simulations of solenoid drives

The simulation embedded in this application note have common parts, for ease of comparison. The difference manifests in the power electronics driving the setup.

Inside the block of the MOSFET driver logic the current feedback is being compared to its reference value. When the reference value is higher than the feedback, the MOSFET is switched at 1 kHz frequency.

The current reference is of a predetermined shape and is applied to all simulations in the same manner.

Click below to enter the simulation.

5. Summary of the topologies

Table 1 shows the losses encountered in each device for each topology, as well as their total loss. The MOSFETs used in the free-wheeling and active-clamped simulations were BUK9K13-60E, in the repetitive avalanche simulation BUK9K13-60RA and in the boost converter simulations BUK9Y38-100E, as these MOSFETs need to withstand higher voltages. Although the losses appear to be higher in the Boost topology, the recuperation of the energy means that it’s efficiency is on par with the free-wheeling topology, despite using higher RDSon components.

Table 1. Energy losses comparison of surveyed topologies (mJ)
Topology Free-wheeling Avalanche Active clamp Boost
Switching MOSFET (top)

0.3

0.3 0.3 0.9
Selector MOSFET (bottom) 1 5.1 3 4
Boost MOSFET - - - 0.03
Switching diode (bottom) 15.5 15.3 15.4 15.6
Freewheeling diode (top) 0.1 - - 0.25
'OR' diode - - - 3.8
Zener diode - - 2 -
Total losses 17 20.7 20.7 26

Table 2 shows a summary of the pros and cons of the surveyed topologies. The avalanche and active clamp circuits are positioned between the low cost and low speed free-wheeling topology and the high cost and high speed boost topology. While there are risks in the longevity of the devices in the middle two topologies, Nexperia’s repetitive avalanche rugged components are extensively tested and their data sheets are equipped with the necessary data to make an informed choice and have the MOSFET last the full application lifetime.

Table 2. Performance comparison of surveyed topologies.
Topology Free-wheeling Avalanche Active clamp Boost
Cost

Low

Low Low High
Speed Low Medium Medium High
Efficiency High Low Low High
Reliability Long term Long term Questionable Long term
Avalanche current as a function of avalanche time
Figure 11. Avalanche current as a function of avalanche time

6. How to select a repetitive avalanche rugged part

Existing MOSFET data sheets give scarce data about repetitive avalanching a MOSFET. The ones that do, give a very conservative rating. Nexperia’s repetitive avalanche products provide a way to objectively assess the suitability of the chosen part for the aimed application. From Fig. 7 the avalanche voltage can be read as 68 V, the avalanche current 1.4 A and the avalanche time is 0.1 ms. The inductance is 5 mH.

Let’s consider the BUK9K35-60RA. In the device data sheet, there are two figures (Fig. 11 and Fig. 12) that can help with choosing the device. From the avalanche current it can be seen from Fig. 11 that repetitive avalanche can be allowed to last for up to 0.2 ms. Eq 3 shows the amount of energy contained in the inductor and dissipated by the MOSFET:

(Eq 3)  

This gives a value of 4.9 mJ. From Fig. 12 it can be seen that the number of cycles that can be allowed is approximately 2.5 billion.

Maximum number of avalanche events as a function of avalanche energy
Fig. 12. Maximum number of avalanche events as a function of avalanche energy

We are left only to ensure that we are within the allowable junction temperature. As for the fuel injection frequency we can take a low value of 20 - 30 Hz, the junction temperature is of low concern as the MOSFET junction will have plenty of time to cool.

As these values satisfy the application requirements with small margins, a MOSFET with slightly higher current rating is chosen for the simulations.

7. Avalanche portfolio

Nexperia’s application specific FET portfolio for Repetitive Avalanche offers an alternative between the high-performance/high-cost boost and low-performance/low-cost freewheeling diode solenoid drives. The avalanching method has been possible using planar technology, however by technology optimisation, the Repetitive Avalanche products can comfortably handle reverse currents. The devices are tested rigorously for up to 1 billion cycles to ensure reliability.

Placed within the LFPAK package the device operating point is ensured to be below 175 ℃.

For more information please visit the links below:

PartQuest embedded Cloud simulations were used in this interactive application note.

Page last updated 03 November 2023
91综合在线国产精品| 大屌骚逼射精发情少妇鸡巴| 亚洲av不卡一区二区不卡| 亚洲一区日韩二区精品| 美女扒开大腿让人桶免费看| 大香蕉在线大香蕉在线大香蕉在线| 青青草原在线视频首页网站| 国产精品久久久久9999不卡| 国产精品久久久久久妇女免费| 大鸡八男暴肏淫浪妇视频| av在线中文字幕乱码| 国产诱惑站着操性感美女小穴视频| 99国产精品久久久久久| 蜜桃99视频在线观看| 撕开奶罩揉吮奶头大尺度视频| 亚洲天堂av在线观看免费| 青草精品视频在线播放| 自拍偷自拍亚洲一区二区| 国产精品免费网站免费看| 91精品极品在线免费观看| 久久精品国产在热亚洲| 看免费国外大鸡巴操小骚逼| 日本成年人大片免费观看| 亚洲一区二区精品免费观看| 搜索黑人性欧美大战久久| 国产富婆高潮一区二区| 操逼肥的一线天白虎女人| 强插少妇视频一区二区三区| 66mio人妻精品一区二区三区| 9久精品久久综合久久超碰1 | 中文字幕亚洲欧美日韩在线不卡| 亚洲精品制服丝袜中文字幕乱码| 亚洲人妻一区二区久久 | 久久久久久久久久久久性高潮| 色欲天综合久久久无码网中文| 久久香蕉免费国产天天看| 卡通动漫一区二区综合| 草草影院黄色在线观看| 日韩毛片资源在线观看| 国产精品亚洲福利在线 | 亚洲国产成人精品一区91| 国产97在线精品一区| 五月婷婷六月丁香深爱| 91国产自拍在线一区| 蜜臀av国内精品久久久久久久久 | 国产日韩欧美亚洲另类| 久久蜜臀一区二区三区av| 伊人久久大香线蕉亚洲av| 欧美精品在欧美一区二区三区| 久久99这里只有免费费精品| 欧美日韩亚洲一区二区在线| 国产成人精品日本亚洲777| 国产自产拍午夜免费视频| 国产精品视频免费自拍| 成年女人午夜毛片免费视频| 免费 无码 国产在线观| 日韩一区二区在线精品| 俄罗斯美女扒开B口B毛男人玩吗 | 国产日韩欧美亚洲专区| 亚洲精品第一页在线观看| 欧美日韩亚洲人妻在线| 国产美女人喷水在线观看| 欧美日韩一区二区成人在线| 东北少妇自拍高潮喷水| 青草精品视频在线播放| 亚洲香蕉视频综合在线| 男的鸡插进女的逼免费视频| 我要看外国女生操逼逼的视频 | 一区二区三区人妻在线| 免费在线观看国产不卡| MM1313亚洲精品无码久久| 中文字幕中文字幕乱码| 国产日韩欧美另类专区| 91日本精品免费在线视频 | 国产美女人喷水在线观看| 日本剧情片在线播放网站| 丰满人妻连续中出中文字幕在线| 久久久午夜福利免费视频| 亚洲欧洲中文日韩a乱码| 色哟哟一区二区三区四区视频 | 美女白虎穴内射喷水视频在线观看| 91九色成人在线观看| 国产精品不卡一区二区久久| 日韩一区二区三区东京热| 四房色播五月天婷婷丁香| 东北人妻丰满熟妇av无码区| 日韩美女一区二区三区在线观看| 夫妻性生活视频在线直播| 丰满熟女少妇一区二区三区| 亚洲香蕉大尺码专区在线直播| 人与禽交免费视频在线观看| 青青青国产在线观看资源| 少妇中出中文字幕久久久| 99久视频在线观看免费 | 操逼内射女生免费视频黄片| 日本漂亮丰满中国人免费看| 久久天天躁拫拫躁夜夜AV| 自拍偷在线精品自拍偷蜜臀| 亚洲av毛片免费观看| 日韩精品一区二区三区视频放| 学生妹被爽到高潮受不了视频| 色久悠悠在线观看视频| 未满十八禁止在线播放| 久久综合九色综合色多多| 亚州欧美大鸡巴操肥逼逼| 男生用鸡鸡捅女生屁股免费视频| 国产无遮挡又黄又爽又大| 在线播放国产精品口爆| 中文字幕亚洲精品激情欧美| 国产成人无码区免费AV片蜜臀| 丁香花在线视频观看免费| 男人插女人鸡在线污视频观看 | 亚洲国产日韩欧美综合在线| 另类艳情双性人妖视频网站| 日韩中文字幕av电影| 国产精品成人自拍视频| 在线人妻无码中文dvd视频| 国内精品国产成人国产三级| 国产另类在线欧美日韩| 五月天丁香婷婷狠狠狠| 大屌骚逼射精发情少妇鸡巴| 午夜影院1000在线免费观看| 高跟翘臀后进式视频在线观看| 草草影院黄色在线观看| 国产黄色性生活一级片| 国产精品毛片高清在线完整版| 啊啊啊逼逼好痒啊啊视频| 日本人体精品一区二区三区视频| 成人福利视频免费观看| 日韩av不卡在线播放| 丁香激情综合网激情五月| 伊人天堂午夜精品草草网| 男人把女人捅到爽爆免费视频| 国产中文字幕有码视频| 亚洲国产日韩欧美综合在线| 男人用鸡巴插女人视频下载| 国产日韩欧美亚洲专区| 99国产精品亚洲一区二区三区 | 色综合久久久国产精品| 亚洲熟妇v一区二区三区色堂| 美女扒开大腿让人桶免费看| 色综合色综合色综合天天上班 | 国产av天堂久久精品| 日韩 有码 中文字幕 在线| 欧美一区二区三区爽爽爽| 天天躁日日躁狠狠躁日日| 隔壁人妻bd高清中文字幕| 尹人大香蕉在线精品视频| 日日摸夜夜添夜夜添亚洲女人| 999国产精品永久免费视频| 国产精品久久久精品免费| 黄色三级电影在线入口| 中文字幕人妻熟女人妻av| 亚洲国产精品一区二区久久预告片 | 日韩精品一区二区三区视频放 | 免费观看又色又爽又黄的| 中文字幕国产不卡一区| 中文字幕亚洲欧美日韩在线不卡 | 亚洲理论中文在线观看| 国产男女猛进猛出粗暴啊| 日韩欧美三级影片在线观看| 色综合久久久中文字幕波多| 精品人妻伦九区久久69| 国产诱惑站着操性感美女小穴视频 | 欧美一级久久精品费色a| 伊人成人在线高清视频| 日韩一区二区在线精品| 91福利免费体验区试看藏经阁| 黑人精品一区二区三区av| 国产免费一区二区三区最新6| 亚洲国产精品成av人| 水蜜桃在线精品视频网| 日韩精品一区二区三区视频放 | 激情文学婷婷六月开心久久| 美味人妻手机在线观看| 国产av自拍日韩高av| 日本高清视频不卡一区二区| 大鸡巴插入少妇骚穴视频| 日韩黄片毛片在线观看| 东北少妇自拍高潮喷水| 国产精品无码免费一级毛住a| 国产二级一片内射视频| 99久久精品99久久精品视频| 婷婷亚洲综合五月天麻豆| 伊人久久综合大杳蕉中文无码 | 国产a级久久久精品视频| 成人福利视频免费观看| 爽爽午夜福利视频一区二区 | 97精品国产自产在线观看永久 | 91午夜精品福利在线亚洲| 人妻在线有码中文字幕| 性刺激特黄毛片免费视频| 夜夜躁日日躁狠狠久久av乐播| 国产在线乱码一区二区三区潮浪| 久久精品国产亚洲欧美成人| 97精品视频在线观看| 人妻久久久一区二区三区视频| 国产超碰天天爽天天做天天添| 欧美视频中文字幕视频日韩视频 | 激情毛片av在线免费看| 国产区av一区二区三区| 久久综合九色综合本道| 视频一区中文字幕在线观看| 亚洲中文字幕无码永久免弗首页 | 这里都是精品熟女内射| 国产日韩一区二区不卡视频| 日本免费一区二区三区视频在线播放| 成人欧美一区二区三区1314| 欧洲的大长鸡巴操日本小浪逼| 色综合久久久久综合体| 一本色道久久88综合日韩 | 日本一区二区高清视频在线观看| 女人的天堂av网免费| 中文字幕有码视频推荐| 国产日韩欧美亚洲专区| 18禁止免费网站免费观看| 久久久久精品午夜理论片| av日韩精品在线播放| 伊人久久综在合线亚洲| 性生活AV在线直播成人社区| 人妻少妇精品视频区二| 久久久午夜福利免费视频| 大鸡巴操美女骚逼嫩穴视频| 我爱美女小骚骚的小骚逼| 国产亚洲精品成人av一区| 中文字幕人妻丝袜一区一三区 | 中文人妻无码一区二区三区在线| 国产免费一区二区三区最新6| 伊人久久大香线蕉亚洲av| 中文字幕黄色综合网免费| 少妇精品视频一区二区免费看| 欧美三级经典影片视频| 国产精品久久久久久久第一福利 | 日韩黄片毛片在线观看| 国产精品久久久久精品三级下载| 亚洲综合色成人影院| 国产人成91精品免费观看| 国产一级片大全免费在线播放| 全部免费特黄特色大片看片| 情激情综合亚洲欧美专区| 丝袜美腿亚洲一区二区| 蜜桃免费视频在这里看| 99国产精品黄色片子| 丰满女人床上激情久久| 久久久精品欧美中文一区二区三区| 欧美日韩激情在线一区二区| 另类艳情双性人妖视频网站| 精品国产一区二区三区卡 | 在线蜜臀av中文字幕| 自拍日韩亚洲一区在线| 啊啊啊好舒服不要再插了要高潮了| 久久久久伊人亚洲最大av综合| 五十老熟女高潮嗷嗷叫| 国产精品无码免费一级毛住a| 亚洲欧美另类丝袜在线| 强奷漂亮的夫上司犯在线观看| 美日韩一级片欧美一级片| 日韩AV无码免费看久久久| 亚洲国产精品一区二区久久预告片 | 久久久国产精品1区2区| 国产女人喷浆抽搐高潮视频| 免费黄色国产精品日更| 国产一区二区最新在线| 欧美特黄片在线免费播放| 亚洲国产精品一区二区三区四区 | 国产黄色一级大片全集| 国产av自拍日韩高av| 日韩一区二区在线精品| 青青草原在线视频首页网站| 少妇人妻与黑人精品免费视频 | 国产精品不卡一区二区久久| 亚洲人人妻人人爽av| 日韩三级中文字幕不卡| 国产精品v日本精品v欧美精品 | 野花视频在线观看免费高清版| 久久人人做人人妻人人玩| 亚洲综合色一区二区三区蜜臀| 日韩欧美黄片在线播放| 人成网av精品自在自拍| 久久久久精品产亚洲av| 成人精品一区二区三区不卡| 91蜜桃臀久久一区二区| 情产国品久久久久久久9999| 国产精品三级精品国产50| 操逼啊口爆啊rrr中途啊免费| 精品国产av一区二区三区蜜臀 | 男生操女生小逼爽爽爽看看| 深夜视频在线观看你懂的| 9久热久re爱免费精品视频| 国产精品区第二页尤自在拍 | 亚洲精品国产成人综合免费| 青青河边草视频在线观看| 天堂av毛片免费在线看| 太大太粗好爽受不了视频| 夜夜躁日日躁狠狠久久av乐播| 青青青国产在线观看资源| 十八禁网站免费在线观看| 久久精品成人无码观看56| 极品美女高潮精品16p| 国产精品为爱搞点激情| 日日噜噜噜噜夜夜爽亚洲| 国产av丝袜美腿视频一区| 国产中文字幕在线免费观看 | 国产熟女激情视频自拍| 亚洲AV无码一区二区三区动漫 | 国自产精品手机在线观看视| 国产精品亚洲综合第一区| 好好热精品视频在线观看| 亚洲高清在线精品一区二区| 91久久国产精品91久久性色| 嗯啊好爽用力啊视频在线观看| 日本一区二区三区女优在线| 国产精品高清在线播放| 一本色道久久88综合日韩| 美女无套内射粉嫩99内射| 我要看外国女生操逼逼的视频| 欧美精品aaaa久久久| 久久精品国产在热亚洲| 少妇连续高潮爽到抽搐| 欧美精品国产成人综合亚洲| 啊啊啊小穴好痒逼逼视频| 久久这里只有偷拍精品视频| 在线日韩AV免费永久观看| 综合亚洲欧美一区二区三区| 高清一区二区中文字幕| 91青青草原免费观看| 国产精品亚洲福利在线| 尹人大香蕉在线精品视频| 欧美黄色成人在线电影 | 看免费国外大鸡巴操小骚逼 | 蜜桃一区二区三区在线| 久热这里只有精品视频4| 国产aa视频一区二区三区| 色婷婷综合五月在线观看| 日日噜噜噜夜夜噜噜噜| 看日逼的看日逼的看日逼的看日逼 | 亚洲AV无码专区片在线观看| 国产精品一区二区亚洲推荐| 欧美特黄片在线免费播放| av亚洲中文字幕精品| 国产精品免费视频播放不卡| 呃呃啊啊啊好爽快到了黄色| 久久亚洲精品成人在线| 一区二区三区在线观看日本| 亚洲同性男男GV在线观看| 91中文字幕在线永久| 国产精品午夜一区二区三区四区| 美女扒开双腿被捅的视频| 国产一级a级高清性较视频| 国产精品无码免费一级毛住a| 扒开老女毛荫荫的黑森林视频| 天堂a免费视频在线观看| 一本在线视频中文免费看 | 青草精品视频在线播放| 欧美a级黄色中文字幕手机在线| 日本到在线高清视频观看 | 国精产品一品二品国精品| 我想看黄片久久久久久久久久久| 男人抚摸亚洲女大学生的大胸 | 国产av自拍日韩高av| 亚洲精品黄网在线观看| 亚洲国产精品成人综合片| 男人把女人捅到爽爆免费视频| 亚洲国产日韩欧美综合在线| 韩国免费A级毛片久久不卡片| 国产亚洲精品免费专线视频| 成年免费大片观看在线| 男人抚摸亚洲女大学生的大胸| 大陆猛男大鸡巴操骚美女骚逼视频 | 正在播放干熟妇久久精品视频一本 | 91精品极品在线免费观看| 久久国产一级黄色片子| 外国的大鸡巴操美女骚逼| 亚洲精品第一页在线观看| 激情文学婷婷六月开心久久| 国产主播在线一区二区| 性夜国产夜春夜夜爽三级| 色综合人妻中文字幕精品系列| 一本色道久久88综合日韩| 亚洲国产日本韩国福利在线观看| 高清日韩久久久一区二区| 伦理片免费在在线视频观看| 国产草莓视频无码a在线观看| 亚洲中文字幕无码永久免弗首页| 神马午夜伦理精品亚洲| 男的鸡插进女的逼免费视频| 国产爽又爽视频在线观看| 久久久人妻国产精品一区 | 日韩精品毛片在线看| 国产日本亚洲一区二区 | 国产精品女同性一区二区| 亚洲免费视频区一区二| 国产乱码精品一区二区三区播放| 久久香蕉国产线看观看6| 久热热久这里只有精品国产| 美女被黑人鸡巴草的爱液狂溅| 成年女人喷潮毛片免费播放| 男人捅开女人的逼国语对白| 在线亚洲91成人在线视频视频| 性生活AV在线直播成人社区| 日本一区二区三区女优在线| 欧美一区二区三区播放| 最新av国产在线播放| 午夜激情毛片在线观看| 免费黄色国产精品日更| 亚洲高清中文字幕综合网| 国产精品免费av在线播放| 正在播放国产呦精品系列| 国产精品国产午夜免费看| 污污污视频在线观看免费视频| 久久久久亚洲av成人网热| 亚洲嫩模三级片中文字幕 | 日韩推理片2021电影在线观看| 国产鲜肉帅哥大鸡巴操美女逼内射 | 强d乱码中文字幕熟女免费| 大鸡巴用力抽插骚逼视频| 男人抚摸亚洲女大学生的大胸 | 天天久久狠狠伊人第一麻豆| 亚洲av人片乱码色午夜| 美女被草视频免费网站| 国产黄色网页在线观看| 中文av岛国无码免费播放| 欧美激情日韩精品久久久| 日韩美女一区二区三区在线观看| 99爱在线精品视频免费观看9| 中文人妻熟妇精品乱又伧老牛在线 | 99热这里只有精品网站| 日本老师做三 片乱码视频| 美日韩一级片欧美一级片| 亚洲中文在线视频观看| 骑乘少妇喷水高潮69av| 日本熟妇内射一区二区| 欧美一区二区三区最新| 公侵犯人妻中文字幕一区| 一区二区三区激情在线观看| 久热这里只有精品视频4| 国产线视频精品免费观看视频| 伊人久久综合大杳蕉中文无码 | 乱淫一区二区三区麻豆| 久久久久久一区二区三区四区别墅| 亚洲一区国产午夜福利| 赿南美女拳交操逼视频大片| 女自慰喷水大学生高清免费看| 高清日韩中文字幕在线| 正在播放国产无套露脸视频| 日本一区二区免费在线不卡| 鸡鸡插屁股视频日韩在线免费观看 | 国产激情一区二区激情| 久久精品中文字幕人妻中文| 中文字幕在线av电影| 中国国语毛片免费观看视频| 又嫩又硬又黄又爽的视频| 国产一卡二卡精品乱码| 看蓝色的鸡巴搞进去女人的逼里面 | 欧美成人一区二区三区高清| 看日逼的看日逼的看日逼的看日逼 | 亚洲精品无码专区在线观看| 国产鲜肉帅哥大鸡巴操美女逼内射 | 国产激情高中生呻吟视频| 色婷婷五月综合亚洲大全在线观看| 国产精品午夜免费福利| 亚洲精品在线韩国日本| 又色又爽又黄的视频大全| 亚洲精品美女在线观看播放| 国产精品九色蝌蚪自拍| 国产精品污双胞胎在线观看| 无情的大屌操骚穴的视频| 伊人天堂午夜精品草草网| 99国产精品久久久久久| 人妻视频在线一区二区三区| 一区二区三区欧美影片| 99国产精品国产自在现线| 精品国语自产拍在线观看| 51短视频精品全部免费| 国产在线小视频免费观看| 隔壁人妻bd高清中文字幕| 国产传媒小视频在线观看| 午夜伦理激情福利视频| 国产免费成人在线观看视频| 快插我的逼逼里好爽的免费视频| 国产精品毛片高清在线完整版 | 国产精品区第二页尤自在拍| 国产综合亚洲欧美日韩在线| 国产午夜精品一区二区三区视频| 黄色视频在线观看破处女| 色偷偷人人澡久久超碰91蜜臀| 三级网站一区二区三区| 国产激情一区二区激情| 中文字幕日韩精品免费看| 午夜韩国理论片在线观看| 久久精品 国产精品香蕉| 天天躁日日躁狠狠躁日日| 131美女爱做视频高清在线| 又嫩又硬又黄又爽的视频| 日韩亚洲一区二区三区中文字幕 | 三级电影在线观看不卡| 久久人妻久久人妻涩爱| 大鸡巴不停抽插双插喷水漫画视频 | 九九最新视频免费观看九九视频| 91出品视频在线观看| 大鸡巴不停抽插双插喷水漫画视频| 久久久国产精品1区2区| 日韩欧美三级影片在线观看| 蜜臀av首页在线观看| 淫荡小骚逼想要大肉棒视频| 亚洲欧美国产专区在线观看| 国产亚洲一区二区三区精品久久| 国产亚洲精品免费专线视频| 欧美二精品二区免费看| 日本老师做三 片乱码视频| 国产富婆高潮一区二区| 在线观看一区二区三区亚洲| 欧美精品午夜福利不卡| 激情一区二区三区四区| 日本老师做三 片乱码视频| 色综合天天综合网天天| 亚洲av精品一区在线| 中文字幕久久久人妻人区| 99国产精品亚洲一区二区三区| 亚洲精品美女在线观看播放| 欧美日韩午夜在线一区| 手机免费av片在线观看| 欧美激情视频一区 二区| 卡通动漫一区二区综合| 久久精品国产亚洲夜色av| 看免费国外大鸡巴操小骚逼| 欧洲免费无线码在线观看土| 一本色道久久88综合日韩 | 欧美一区二区三区爽爽爽| 无遮挡男女一进一出视频真人| 最近日韩精品视频在线| 青草精品视频在线播放| 国产日韩一区二区不卡视频| 日韩美女一区二区三区在线观看| 国产精品久久久久久精三级| 欧美A极v片亚洲A极v片| 激情毛片av在线免费看| 亚洲国产欧洲综合997| 探花农村老头操老妇说话对白| 91精品国产福利在线观看你| 在线观看中文字幕二区| 丁香花在线视频观看免费| 激情春色欧美激情国产剧情| 国内精品久久久久久一区二区| 亚洲理论中文在线观看| 我要大鸡吧在线观看免费| 日本熟妇内射一区二区| 日本精品福利在线视频| 成人两性生活免费视频| 亚洲AV无码一区二区少妇| 午夜亚洲精品中文字幕| 亚洲无线码中文字幕在线| 欧美日韩国产福利在线观看| 丰满女人床上激情久久| 日韩色视频一区二区三区亚洲| 日韩在线中文字幕三区| 亚洲中文字幕中文在线| 日本精品一线在线观看| 亚洲精品制服丝袜中文字幕乱码| 欧美精品久久久天堂一区| 抖阴视频啊啊啊好舒服大鸡吧| 免费黄色大片在线观看| 久久香蕉国产线看观看6| 黄片视频在线观看国产| 黑人精品一区二区三区av| 超性感美女被狂日高潮免費視頻| 亚洲国产日韩欧美综合在线| 少妇一夜一次一区二区| 99久久无色码亚洲字幕| 国产熟女激情视频自拍| 自由成熟性生活免费视频| 男人天堂一区二区av| 久久久久久无码精品大片| 午夜亚洲精品中文字幕| 91精品久久午夜大片| 亚洲AV无码一区二区三区动漫| 动漫无遮羞视频在线观看| 美女主播视频福利一区二区| 亚洲中文字幕有码视频| 一区二区三区欧美影片| av日韩精品在线观看| 超碰人人爽爽人人爽人人| 国产精品熟女自拍视频| 久久精品国产亚洲av影片| 91精品麻豆日日躁夜夜躁| 猛男人插女人逼里面操逼| 99国产成人精品视频app| 日本黄大片538视频| 日本五十路熟女啪啪啪| 国产自产拍午夜免费视频| 大鸡巴用力抽插骚逼视频| 欧美日韩国产一区二区的| 男生使劲操女生下面视频国产| 一本色道久久88综合日韩| 91免费精品国产拍在线| 青青草青青草在线观看视频| 欧美日高清视频在线观看| 女人下面视频骚粉骚逼操| 小骚货被打桩啊啊骚叫视频网页| 深夜欧美福利在线视频| 中国一级做a爰片久久毛片| 国产精品系列在线播放| 无码a级毛片免費视频内谢| 无码系列久久久人妻无码系列| 国产成人久久精品麻豆一区| 国产美女极度色诱视频| 男人操女人嗷嗷叫的视频| 欧美大鸡巴猛插肥婆视频| 999国产精品永久免费视频| 巨乳av在线免费观看| 国产黄片久久免费观看| 色偷偷的亚洲男人的天堂| 我想看黄片久久久久久久久久久| 大学生高潮无套内谢免费视频| 国产日本亚洲精品在线一二三四| 91男厕偷拍男厕偷拍高清| 国产精品自在在线午夜精华在线| 亚洲中文在线视频观看| 国内少妇自拍视频专区| 亚洲精品一区二区久久| 激情毛片av在线免费看| 日本女中年在工作隐私小鸡巴操逼| 国产视频三区二区在线观看| 国产欧美精品一区二区性色| 国产99久久精品一区二区300| 日韩精品在线视频vvv| 丁香激情综合网激情五月| 亚洲人妻av一区二区| 色哟哟一区二区三区四区视频 | 寂寞少妇让水电工爽了一| 女人下面视频骚粉骚逼操| av天堂午夜在线观看| 日韩av不卡在线播放| 亚洲人妻av一区二区| 激情毛片av在线免费看| 男人下面插入女生下面啊啊啊视频| 久久99这里只有免费费精品| 中国一级全黄的免费观看| 亚洲av不卡一区二区不卡| 草草影院黄色在线观看| 夫妻性生活视频在线免费看| 无码系列久久久人妻无码系列| 亚洲av天堂在线免费观看| 国产福利精品蜜臀91啪 | 999国产精品永久免费视频| 亚洲欧美国产专区在线观看| 国产91手机在线播放青青| 激情五月六月婷婷色视频| 五月婷婷丁香激情对白一区二区| 亚洲精品一区二区毛豆| 重磅泄露操鸡吧美女视频| 成人无码av片在线观看蜜芽| 色眯眯日本道色综合久久| 欧美精品国产成人综合亚洲| 欧美黄色成人在线电影| 99热精品在线观看首页| 太大太粗好爽受不了视频| 18以上岁毛片在线播放| 亚洲国产中文剧情av鲁一鲁| 超大鸡巴操处女小骚逼免费视频| 成人两性生活免费视频| av黄色在线观看一区二区三区| 亚洲av永久无码青青草原| 131美女爱做视频高清在线| 久久久久久久久极品99| 91精品久久午夜大片| 日韩欧美三级影片在线观看| 国产一区日韩精品二区| 波多野结衣在线观看一区二区三区| 在线免费看黄国产精品| 久久精品美国亚洲av伦理| 国产精品91福利一区二区三区| 尹人大香蕉在线精品视频| 美女张开腿让男人桶到爽裸体| 香蕉欧美在线视频播放| 国产精品超碰在线97| 美女无套内射粉嫩99内射| 正在播放干肥熟老妇视频| av亚洲中文字幕精品| 日本一区二区免费在线不卡| 能看美女逼的网页免费看| 国产精品久久久久久精三级| 日本特黄特黄录像在线| av午夜精品一区二区三区| 男人抚摸亚洲女大学生的大胸 | 亚州欧美大鸡巴操肥逼逼| 黄色av网站一区二区三区| 天天干天天操天天射嘴里| 国产欧美精品一区二区性色| 精品久久久久久久大| 亚洲精品第一页在线观看| 国产在线精品一区二区三区不 | 日本黄色一区二区三区| 久久精品 国产精品香蕉| 亚洲精品精品日本日本| 痴女av一区二区三区| 亚洲嫩模三级片中文字幕| 黄色av网站一区二区三区| 自拍偷自拍亚洲一区二区| 国产高清视频一区二区| 中国无码AV看免费大片在线| 日韩情色电影中文字幕| 激情毛片av在线免费看| 色噜噜狠狠狠综合曰曰曰| 国产偷国产偷亚洲高清| 久久国产精品免费看小草| 中文无字幕一区二区三区| 91成人精品国产免费男男| 国产另类在线欧美日韩| 久久亚洲精品成人在线| 国产精品v日本精品v欧美精品| 国产精品午夜一区二区三区四区 | 菠萝菠萝蜜在线视频在线播放| 欧美成人动漫免费在线观看| 国内午夜精品视频在线观看| 嗯啊男人捅女人小穴视频| 在线免费看片国产精品| 国产片高潮抽搐喷水免费| 正在播放干肥熟老妇视频| 卡通动漫一区二区综合| 日韩女优日逼视频粉嫩开包| 成年免费大片观看在线| 要肉棒插死骚货黄色视频| 大鸡巴用力抽插骚逼视频| 成人深夜在线观看免费视频| 18禁看一区二区三区| 大屌骚逼射精发情少妇鸡巴 | 人妻少妇精品中文字幕av蜜桃| 97激情在线视频五月天视频| 激情人妻av一区二区| 国产精品久久久久久妇女免费| 国语成人高清在线观看| 国产av自拍日韩高av| 激情五月天亚洲日婷婷| 亚洲熟妇v一区二区三区色堂| 日韩欧美三级影片在线观看| 韩国免费A级毛片久久不卡片 | 91男厕偷拍男厕偷拍高清| 中文字幕乱码熟女人妻| 九九热视频大全精品免费| 91人妻人人澡人人爽人人精品一| 日本一区二区三区女优在线| 91精品综合国产蜜臀久| 曰本精品人妻久久久久久| 精品国产尤物黑料在线观看 | 凹凸国产在线观看高清画质| 国产精品91福利一区二区三区| 小伙子狂暴大奶子美女逼| 日韩av不卡在线播放| 亚洲日韩精品欧美一区二区三区| 91免费精品国产拍在线| 成人公开无码免费DVD视频| 成人经典视频免费在线| 男生把小鸡鸡插到女生阴巢的视频| 亚洲大陆免费在线视频| 亚洲热女乱色一区二区三区 | 视频一区精品中文字幕| 久久综合九色综合97| 成人国产亚洲欧美日韩| 国产乱码精品一区二区三区麻一豆| 久久久国产综合av天堂| 亚洲中文字幕无码永久免弗首页| 漂亮的小蜜桃在线观看| 中国无码AV看免费大片在线|