操逼啊口爆啊rrr中途啊免费-中文字幕av网一区二区-中文字幕久久精品波多野结百度-国产三级视频在线观看

雙極性晶體管

二極管

ESD保護(hù)、TVS、濾波和信號(hào)調(diào)節(jié)ESD保護(hù)

MOSFET

氮化鎵場(chǎng)效應(yīng)晶體管(GaN FET)

絕緣柵雙極晶體管(IGBTs)

模擬和邏輯IC

汽車應(yīng)用認(rèn)證產(chǎn)品(AEC-Q100/Q101)

IAN50003 - Driving solenoids in automotive applications

There are a wide variety of solenoid drive circuit topologies, most of these use MOSFETs in various configurations . This interactive application note considers 4 driving modes.

Authors: Nandor Bodo, Andy Berry, Automotive Application Engineers, Manchester, UK

This interactive application note contains an embedded PartQuest Cloud simulation to augment the text.

To open the embedded simulation, simply hover over the simulation image. Left click anywhere in the graphic area once the central play button changes in colour from black to yellow. This opens the schematic in the PartQuest Cloud environment. See the interactive application note home page for more details on how to use the simulations. See accompanying application note: AN50003

Download AN50003

Solenoid principle of operation
Figure 1. Solenoid principle of operation

1. Introduction

Throughout the evolution of modern engineering electromagnetic devices have taken prevalence in changing electrical energy to mechanical energy or movement. Most commonly we think about motors for such applications, however the humble solenoid is used even more often, thanks to its simplicity of construction and ease of driving. Solenoid coils are typically found in relays, contactors, and valves.

In the automotive sector solenoids are used for a range of applications, from starting the engine to shifting the transmission. Solenoids are used to activate four-wheel drive system, fuel injection systems, locking the doors of the car and controlling the air flow in the vehicle's air conditioning system. The vast number of valves in the vehicle are also controlled by solenoids.

2. Solenoid operating principles

Consisting of a fixed coil and a movable core or slug (termed the armature) the solenoids are able to push, pull or even do both as the current through them changes direction. The armature is used to assert mechanical force to the driven system. The motion is usually reversed by a spring that is attached to the core. The armature movement changes the inductance of the coil, which in turn acts as an electromagnet. The magnetic force applied to the armature is proportional to the change of this inductance and the current flowing through the core, as shown in Fig. 1.

From the electrical viewpoint, the solenoid acts as an inductive component, consisting of multiple wound coils. The current flowing through them creates a magnetic field. The sluggish nature of this highly concentrated field creates a voltage (termed Electro Motive Force, EMF) that opposes change in the magnetic field, and therefore in the current as well. In this way as voltage is initially applied to the solenoid coil the current starts rising gradually. The magnetic field, and therefore the force applied to the armature rises until it reaches a point where it is large enough to move the armature in the desired direction.

Idealised Voltage and current waveforms
Figure 2. Idealised voltage and current waveforms

Because of this slow response, it is prudent to apply a high voltage to the solenoid at the start of its actuation to initiate a faster current response. As the armature starts moving, the solenoid’s inductance (as a function of the armature position) and back EMF (as a function of the armature speed) rise, limiting the rate of rise of the current.

Once the movement of the coil is mechanically prevented as it reaches its intended resting point, the back EMF diminishes. At this point the current continues to rise until only the coil resistance limits its value. This current can be quite high for the power supply, which is normally a battery in automotive applications

As the system has reached a mechanical steady state the amount of force needed to maintain this state is much lower than for moving the armature. Besides, the armature is usually part of a magnetic circuit with an air gap.

This air gap is closed by actuating the solenoid and moving the armature, therefore rendering the magnetic reluctance (equivalent for resistance in electric circuits) very small. This in turn allows the magnetic field flux (equivalent to current in electric circuits) to flow in abundance, increasing the applied force to the armature.

For the above reasons it is advisable to decrease the applied voltage to the solenoid after its armature has reached its intended position, to limit the applied power and avoid depleting the vehicle battery.

Idealised voltage and current waveforms are shown in Fig. 2.

Peak and hold current waveform
Figure 3. Peak and hold current waveform in a fuel injector application

3. Current regulated solenoid drives

A more recent approach to controlling solenoids uses current control as shown in Fig. 3.

The waveform is known as the “peak-and-hold” current waveform, predominantly used in Fuel Injection applications. Initially, the current is increased rapidly to a high value during the Boost Phase. The current can be allowed to reach high values at this stage, since it will provide the initial push for the armature to begin its journey. The slope of the current should be high and, therefore, the applied voltage should be high as well.

In the Peak Phase, for a time period sufficient for the armature to take its final position the current is held at a certain value. Then the current is reduced during the Bypass Phase. The rate of decrease of the current is dependent on the reverse voltage applied to the inductor in this phase. The current is set to a lower value during the Hold Phase. Therefore, the force applied to the armature is reduced to a level sufficient to hold the armature in place. The losses are also reduced since this current can be substantially lower than the one applied in the Peak Phase.

Finally, once the control signal is withdrawn, in the End of Injection Phase, the current is left to decay to zero, leaving the spring to return the armature to its initial position. Once again, the rate of inductor current decrease can be influenced by the voltage that appears across the inductor. At this instant, the speed of current decay might be important for timing reasons. If the current decays slowly it is hard to predict the instance when the force of the spring will prevail over the magnetic force, as the mechanical properties of the spring and the whole mechanical system of the solenoid might change over time. Furthermore, for the same reasons the speed of the armature cannot be guaranteed. For some time sensitive applications, such as internal combustion engine injector drive, such timing differences might prove to be crucial.

4. Discussion of simulation results

Four approaches to driving a current regulated solenoid are explored in simulations. The simulations had common control parts, for ease of comparison. The difference manifested in the power electronics driving the solenoid. The MOSFET driver logic relies on the current feedback being compared to its reference value. When the reference value is higher than the feedback, the MOSFET is switched at 1 kHz frequency. For the purposes of these simulations the solenoids were replaced by an inductor with 5 mH inductance.

Schematic of driver with freewheeling diode.
Figure 4. Schematic of driver with freewheeling diode

4.1. Solenoid driver with free-wheeling diode

This is the simplest and easiest way to drive a solenoid. The inductive energy of the solenoid decays through a diode up to the battery voltage. The schematic is shown on Fig. 4 and the solenoid current and its reference is shown in Fig. 5

When the reference signal is received, at 10 ms, both MOSFETs turn on to ensure maximal current increase in the Boost Phase. Once the peak reference current is reached, the high side MOSFET is switched so that it controls the current around this reference value, which is chosen to be 3 A in the simulation. When the MOSFET is turned on the applied voltage equals to the battery voltage; when the MOSFET is turned off the current circulates through the bottom MOSFET and the bottom diode. The voltage applied to the inductor is equal to the voltage drop on these two elements, i.e. it is very low.

Solenoid current waveform – free-wheeling topology
Figure 5. Solenoid current and reference waveforms –?free-wheeling?topology

After the target time of 10 ms for the Peak Phase has elapsed, at 20 ms, the reference is changed to 1.2 A. Again, the top MOSFET is used to regulate the current. After the Hold Phase, at 40 ms,both MOSFETs are turned off and the current free-wheels through the two diodes, making the effective reverse voltage almost equal to the battery voltage. Considering a simple inductor voltage/current relation, with a battery voltage of 12 V and 5 mH inductance the duration of the End of Injection phase can be calculated to be close to 0.5 ms.

(Eq 1) 

Both MOSFETs and diodes will need to withstand the battery voltage. Both MOSFETs and the top free-wheeling diode need to be rated to the reference Peak current, while the bottom free-wheeling diode conducts only the Hold current for a short amount of time. The dissipated energy was calculated for each component during the whole activation process. Comparison of the energies dissipated in each device for each topology can be found in Section 5. To obtain the power, the calculated energy value needs to be multiplied with the desired frequency of operation.

Compared to the other driver topologies, the free-wheeling driver is simple, has a low component count, but it is the slowest due to the inductor voltage being approximately equal to the battery voltage.

(Eq 2) 

4.2. Solenoid driver with MOSFET avalanching

Schematic of driver with avalanching MOSFET
Figure 6. Schematic of driver with avalanching MOSFET

In this case there is no free-wheeling diode and the back EMF of the solenoid forces the MOSFET into avalanche mode of operation. Its schematic is shown in Fig. 6.

The mode of operation is identical to the free-wheeling diode circuit at the start. However, in End of Injection Phase, when both MOSFETs are turned off, the inductor current has no way to free-wheel. Therefore, the inductor voltage is increased until it breaks down the bottom MOSFET and drives it into avalanche mode.

Avalanching inductor current and MOSFET voltage
Fig 7. Avalanching inductor current (top) and MOSFET voltage (bottom).

This voltage is substantially higher than the battery voltage that was applied in the case of the free-wheeling circuit. Therefore, the current will decay faster. A close look at the MOSFET avalanche voltage and current can be seen in Fig. 7.

Consulting the inductor equation, (Eq 1), once again, with a voltage of 68 V, the End of Injection phase duration is now closer to 0.1 ms: a five-fold reduction compared to the free-wheeling case.

Once again, all the components need to be rated above the battery voltage and the target peak current. However, the bottom MOSFET needs to be repetitive avalanche rugged. The energy dissipated in each component is compared in Section 5.

Due to the high voltage of avalanche compared to the battery voltage, this method decays and therefore releases the solenoid faster. However, the energy of the inductor is now dissipated in the MOSFET in the form of heat. Therefore, careful consideration of a MOSFET is needed to handle this energy.

4.3. Solenoid driver with active clamp

Schematic of driver with active clamp
Figure 8. Schematic of driver with active clamp

This option is very similar to avalanche operation. Here a Zener clamp is connected drain to gate of the MOSFET, as seen in Fig. 8.

Once again, the circuit behaviour is identical as with the free-wheeling and avalanche circuits.

However, at the End Of Injection Phase as both MOSFETs are turned off and the inductor voltage starts to increase towards the bottom MOSFET VDS breakdown, the Zener diode starts conducting and pulls the MOSFET gate up forcing it into its linear region.

The MOSFET then maintains the sum of the Zener diode breakdown voltage, the diode forward voltage and the gate-source threshold voltage from drain to source.

active clamp waveforms
Figure 9. MOSFET gate voltage (top), drain to source voltage (middle) and inductor current (bottom); active clamp topology

In the previous case the MOSFET intrinsic diode has broken down in avalanche mode. In this case the current flows through the MOSFET channel.

As the MOSFET is in its linear region with large current and large voltage applied to it, there is an increased chance of hotspots and thermal runaway occurring if conditions are met. During active clamp there are high energy charge carriers generated in close proximity to the MOSFET’s gate oxide. These carriers might be injected into the oxide and cause damage.

Over many active clamp cycles the oxide can wear out and cause parametric shift and ultimately device failure. Currently it is not recommended to use MOSFETs in repetitive active clamp. Alternatively, repetitive avalanche is recommended as the long term reliability during repetitive avalanche is better defined. Simulated waveforms of the circuit behaviour are shown in Fig. 9.

Schematic of driver with Boost converter
Fig 10. Schematic of driver with Boost converter

4.4. Solenoid driver with Boost converter

This is the most complicated topology, shown in Fig. 10, with the highest performance. A boost converter, often operating at an output voltage in the range of 60 V, is used to charge and discharge the solenoid quickly (five times faster with five times larger voltage) during the Boost Phase and End of Injection Phase.

During the Peak and Hold Phases the nominal battery voltage is switched, as in the previous cases. This allows for fast actuation of the solenoid, but also the energy from the solenoid is regenerated into the DC link capacitor of the boost converter.

The cost here is the additional components to make the boost circuit, the additional PCB board space and overall higher voltage rating of the components. The added component count is reflected in the losses. However, it needs to be considered that the MOSFETs used in the Boost simulation are of lower current rating.

Simulations of solenoid drives

The simulation embedded in this application note have common parts, for ease of comparison. The difference manifests in the power electronics driving the setup.

Inside the block of the MOSFET driver logic the current feedback is being compared to its reference value. When the reference value is higher than the feedback, the MOSFET is switched at 1 kHz frequency.

The current reference is of a predetermined shape and is applied to all simulations in the same manner.

Click below to enter the simulation.

5. Summary of the topologies

Table 1 shows the losses encountered in each device for each topology, as well as their total loss. The MOSFETs used in the free-wheeling and active-clamped simulations were BUK9K13-60E, in the repetitive avalanche simulation BUK9K13-60RA and in the boost converter simulations BUK9Y38-100E, as these MOSFETs need to withstand higher voltages. Although the losses appear to be higher in the Boost topology, the recuperation of the energy means that it’s efficiency is on par with the free-wheeling topology, despite using higher RDSon components.

Table 1. Energy losses comparison of surveyed topologies (mJ)
Topology Free-wheeling Avalanche Active clamp Boost
Switching MOSFET (top)

0.3

0.3 0.3 0.9
Selector MOSFET (bottom) 1 5.1 3 4
Boost MOSFET - - - 0.03
Switching diode (bottom) 15.5 15.3 15.4 15.6
Freewheeling diode (top) 0.1 - - 0.25
'OR' diode - - - 3.8
Zener diode - - 2 -
Total losses 17 20.7 20.7 26

Table 2 shows a summary of the pros and cons of the surveyed topologies. The avalanche and active clamp circuits are positioned between the low cost and low speed free-wheeling topology and the high cost and high speed boost topology. While there are risks in the longevity of the devices in the middle two topologies, Nexperia’s repetitive avalanche rugged components are extensively tested and their data sheets are equipped with the necessary data to make an informed choice and have the MOSFET last the full application lifetime.

Table 2. Performance comparison of surveyed topologies.
Topology Free-wheeling Avalanche Active clamp Boost
Cost

Low

Low Low High
Speed Low Medium Medium High
Efficiency High Low Low High
Reliability Long term Long term Questionable Long term
Avalanche current as a function of avalanche time
Figure 11. Avalanche current as a function of avalanche time

6. How to select a repetitive avalanche rugged part

Existing MOSFET data sheets give scarce data about repetitive avalanching a MOSFET. The ones that do, give a very conservative rating. Nexperia’s repetitive avalanche products provide a way to objectively assess the suitability of the chosen part for the aimed application. From Fig. 7 the avalanche voltage can be read as 68 V, the avalanche current 1.4 A and the avalanche time is 0.1 ms. The inductance is 5 mH.

Let’s consider the BUK9K35-60RA. In the device data sheet, there are two figures (Fig. 11 and Fig. 12) that can help with choosing the device. From the avalanche current it can be seen from Fig. 11 that repetitive avalanche can be allowed to last for up to 0.2 ms. Eq 3 shows the amount of energy contained in the inductor and dissipated by the MOSFET:

(Eq 3)  

This gives a value of 4.9 mJ. From Fig. 12 it can be seen that the number of cycles that can be allowed is approximately 2.5 billion.

Maximum number of avalanche events as a function of avalanche energy
Fig. 12. Maximum number of avalanche events as a function of avalanche energy

We are left only to ensure that we are within the allowable junction temperature. As for the fuel injection frequency we can take a low value of 20 - 30 Hz, the junction temperature is of low concern as the MOSFET junction will have plenty of time to cool.

As these values satisfy the application requirements with small margins, a MOSFET with slightly higher current rating is chosen for the simulations.

7. Avalanche portfolio

Nexperia’s application specific FET portfolio for Repetitive Avalanche offers an alternative between the high-performance/high-cost boost and low-performance/low-cost freewheeling diode solenoid drives. The avalanching method has been possible using planar technology, however by technology optimisation, the Repetitive Avalanche products can comfortably handle reverse currents. The devices are tested rigorously for up to 1 billion cycles to ensure reliability.

Placed within the LFPAK package the device operating point is ensured to be below 175 ℃.

For more information please visit the links below:

PartQuest embedded Cloud simulations were used in this interactive application note.

Page last updated 03 November 2023
欧美91精品一区二区三区| 隔壁人妻欲求不满中文字幕| 成人无码av片在线观看蜜芽 | 中文字幕在线av电影| 国产精品视频每日更新国产清纯 | 国内老熟妇精品露脸视频| 亚洲香蕉大尺码专区在线直播| 久久精品久久精品伊人69| 黑人精品一区二区三区av| 激情伊人五月天久久综合| 一卡二卡精品在线免费| 91中文字幕国产精品| 亚洲中文字幕有码视频 | 女性下体被男性猛进猛出的视频 | 又黄又爽有无遮挡的网站| 精品国语自产拍在线观看| 中文人妻熟妇精品乱又伧老牛在线| 欧美日韩一区二区成人在线| 国产农村av对白观看| 国产免费内射又粗又爽密桃视频| 日韩爱爱视频在线观看| 风韵丰满熟妇啪啪老熟女| 中文字幕有码人妻在线| 中国一级全黄的免费观看| 欧美精品aaaa久久久| 中文人妻熟妇精品乱又伧老牛在线| 欧美精品aaaa久久久| 超碰人人爽爽人人爽人人| 99国产欧美久久久精品蜜桃| 日本一区二区免费在线不卡| 男人用鸡巴插女人视频下载| 青青草99久久这里只有精品| 91人妻人人澡人人爽人人精品| 欧美成人三区四区在线观看| 日韩色视频一区二区三区亚洲| 大鸡巴暴草美女的小骚逼| 公交车上猛烈的进入的a片视频 | 欧美一区二区三区裸体| 午夜韩国理论片在线观看| 麻豆回家视频区一区二| 货在沙发风骚至极 自摸肥逼勾引| 美女高潮潮喷冒白浆免费视频| 亚洲中久无码永久在线看 | 中文无字幕一区二区三区| 男生使劲操女生下面视频国产| 久久亚洲精品专区蓝色区| 国产又黄又爽又粗的视频在线观看 | 亚洲精品乱码在线播放| 大屁股迷人少妇在线观看| 久久久久久久久久久久性高潮| 久久这里只要精品视频| 亚洲香蕉大尺码专区在线直播| 欧美美女真人全裸外阴大阴口日逼| 男生把小鸡鸡插到女生阴巢的视频| 好好热精品视频在线观看| 女性下体被男性猛进猛出的视频| 久久久久久一区二区三区四区别墅| 黄色网色网色网色网色| 少妇中出中文字幕久久久| 日韩欧美一级a特黄大片| 强奷漂亮的护士中文字幕| 黄片视频在线观看国产| 97国产精品97久久| 国产中文字幕有码视频| 国产欧美成人精品一区二区| 97精品久久九九中文字幕| 日韩欧美一级a特黄大片| 手机免费av片在线观看| 伊人久久综在合线亚洲| 扫码观看视频的二维码怎么生成| 9久精品久久综合久久超碰1| 视频一区中文字幕在线观看 | 午夜老湿机福利免费观看| 91成人精品国产免费男男| 高颜值午夜福利在线观看| 久青草视频在线免费观看| 久久66热re国产毛片基地| 男女鸡巴插黄激情视频欧美| 欧美三级经典影片视频| 日韩AV无码免费看久久久| 亚洲一区二区黄色录像| 男生使劲操女生下面视频国产| 性生活视频在线观看视频| 国产精品系列在线播放| 日韩欧美一级特黄大片| 亚洲精品一二三区不卡| 97国产精品97久久| 最近日本免费播放视频午夜| 一本到中文无码AV一区| 国产男女猛进猛出粗暴啊| 日韩精品毛片在线看| 国产草莓视频无码a在线观看| 性生活AV在线直播成人社区| 在线观看永久免费黄色| 美女被鸡巴插入喉咙视频在线| 日韩在线一区精品视频漫画| 久久久人妻国产精品一区 | 日本黄色一区二区三区| 男人插女人鸡在线污视频观看| 欧美日韩另类精品激情| 视频一区精品中文字幕| 热99RE久久精品这里都是精品| 国产午夜精品一区二区三区视频| 国产人碰人摸人澡人视频| 欧美人妻精品一区二区三区99| 国产精品v日本精品v欧美精品| 不卡av免费在线网址| 成年大片在线免费播放| 操逼肥的一线天白虎女人 | 一本在线视频中文免费看| 五月婷婷六月丁香俺也去| 青青草原在线视频首页网站| 99热这里只有精品网站 | 欧美日韩另类精品激情| 成年人大片在线观看视频| 久久a天堂av福利免费播放 | 美女张开腿让男人桶到爽裸体| 鸡鸡插屁股视频日韩在线免费观看| 亚洲欧美在线视频第一区第二区| 91国产自拍在线一区| 日韩 国产 精品 亚洲 欧美 | av网站在线观看亚洲国产| 美女扒开屁股让男人桶大奶子骚逼| 欧美日韩午夜在线一区| 国产成人av在线观看| 国产二级一片内射视频| av日韩免费在线观看| 男人天堂一区二区av| 在线观看亚洲欧洲精品| 国产激情高中生呻吟视频| 午夜精品成人内射人妻| 97精品国产自产在线观看永久| 在线观看永久免费黄色| 男人大鸡巴日逼视频免费| 搜索黑人性欧美大战久久| 成人无码黄动漫在线播放| 日本一区二区三区女优在线| 亚洲国产日本韩国福利在线观看| 在线播放国产精品口爆| 国产欧美精品一区二区性色| 天天久久狠狠伊人第一麻豆| 先锋影音在线资源91| 搭讪人妻中文字幕系列| 欧美一级久久久久久国产| 人妻久久久一区二区三区视频| 伦理片免费在在线视频观看| 欧美一级片内射美女少妇| 国内精品久久人妻白浆| 亚洲黄片在线播放视频| 久久精品国产亚洲AV麻豆蜜芽| 国产一区二区三区尤物视频| 卡通动漫一区二区综合 | 亚洲一区二区二区久久成人婷婷| 国产精品免费网站免费看| 精品一区二区三区久久| 国产高清白丝在线观看| 久久久久精品午夜理论片| 色偷偷的亚洲男人的天堂| 日韩精品一区二区三区视频放| 日韩免费成人在线视频| 精品国精品国产av自在久国产 | 久久精品国产亚洲AV麻豆蜜芽| 色哟哟在线观看中文字幕| 国产精品久久久久精品三级下载| 国产一区二区三区尤物视频| 99久久精品免费看国产免费软件 | 国产精品高清在线播放| 97碰碰车成人免费视频| 国产女人av一级一区二区三区| 国产女主播作爱在线观看| 欧美逼逼一区二区三区| 亚洲黄色成人av在线电影| 少妇高潮喷水久久久久久久久久 | 大鸡巴插学生妹骚逼视频| 俄罗斯精品无码一区二区| 国产91手机在线播放青青| 超碰人人爽爽人人爽人人| 在线日韩AV免费永久观看| 久久综合九色综合色多多 | 亚洲人妻一区二区久久 | 亚洲三级成人一区在线| 欧美日韩另类精品激情| 久久免费视频久久免费视频99| 欧美一级久久精品费色a| 午夜亚洲精品中文字幕| 好好热精品视频在线观看| 成人一区二区三区在线观看| 深夜福利av在线播放| 激情国产AV麻豆凡V换脸| 99国产精品久久久久久| 99国产欧美久久久精品蜜桃| 菠萝菠萝蜜在线视频在线播放| 国产精品国产三级国产普| 日韩女优日逼视频粉嫩开包| 亚洲精品美女在线观看播放| 色欲av一区二区三区精品| 成人深夜在线观看免费视频| 亚洲va久久久久久久精品综合| 老頭搡老女人毛片視頻在錢看 | 男生操女生小逼爽爽爽看看| 欧美日韩一级二级三区高清视频| 亚洲高清在线精品一区二区 | 欧洲中文字幕日韩精品成人| 成人性生活视频在线观看| 国内精品久久久久久一区二区| 99热这里全部都是精品| 看操小日本女人乱伦逼视频| 欧美乱妇高清无乱码亚洲欧美| 久久免费亚洲免费视频| 少妇一夜一次一区二区| 好男人视频精品一二三区| 日韩天堂视频在线播放| 美女无套内射粉嫩99内射| 日本精品福利在线视频| 中文亚洲精品在线观看| 国产成人精品日本亚洲777| 久久久久久亚洲国产精品一区二区| 久久久精品欧美中文一区二区三区| 久久久国产精品1区2区| 日日噜噜噜夜夜噜噜噜| 久久久久久精品国产一区| 国产精品女同性一区二区| 欧美日韩视频在线综合| 黄色视频一边摸上面一边插下面| 欧美情欲片一区二区三区| 久草手机在线观看视频| 亚洲最新尤物在线视频| 日本不卡在线视频二区三区| 成人无码黄动漫在线播放| 国产在线视频一区二区不卡| 91麻豆国产自产在线观看亚洲| 日本女中年在工作隐私小鸡巴操逼 | 91久久精品一区二区三区色欲| 91福利免费体验区试看藏经阁| 亚洲嫩模三级片中文字幕| 国产福利午夜精品视频| 久久热福利视频就在这里| 情激情综合亚洲欧美专区| 中文人妻av一区二区三区| 国产在线小视频免费观看| 91精品综合国产蜜臀久| 日本高清中文字幕免费二区 | 国产精品熟女自拍视频| 日韩午夜一区二区三区| 黄色国产精品视频入口| 中文字幕国产不卡一区| 国产美女91精品在线观看| 国产真实乱免费高清视频| 久久天天躁狠狠躁夜夜婷| 在线观看男人鸡桶女人的| 久久久午夜福利免费视频| 久久久久久亚洲国产精品一区二区| 爽爽午夜福利视频一区二区| 国产郑州性生活免费| 亚洲熟妇v一区二区三区色堂| 不卡久久精品国产亚洲av不卡| 亚洲一区二区二区久久成人婷婷| 国产福利精品蜜臀91啪| 国产内射一级一片高清视频蘑菇| 四虎永久精品在线免费| 美女国产黄色三级片在线播放| 强奷漂亮的护士中文字幕| 久久精品国产三级电影| 国产成人欧美一区二区三区的| 久久久久精品产亚洲av| 午夜av成人在线观看| 一区二区三区激情在线观看| 韩国女主角男女裸体操逼鸡巴操逼| 91日本精品免费在线视频| 日日噜噜噜噜夜夜爽亚洲| 九九在线精品亚洲国产涩爱| 久久精品国产亚洲夜色av| 情色中文字幕在线观看| 精品人妻伦九区久久69| 精品久久久久久中文字幕网 | 国产午夜精品一区二区三区视频| 久久精品 国产精品香蕉| 亚洲国产精品毛片av在线下载| 亚洲国产不卡av在线| MM1313亚洲精品无码久久| 中文字幕在线av电影| 色吊丝最新永久免费观看| 中文字幕人妻熟女人妻av| 鸡鸡插进骚逼视频欧美996| 亚洲精品精品日本日本| 中文字幕亚洲欧美日韩在线不卡| 国产综合亚洲欧美日韩在线| 97精品视频在线观看| 四虎永久精品在线免费| 国产精品美女性感视频一区二区| 99精品视频看国产啪视频新 | 东北人妻丰满熟妇av无码区 | 丝袜美腿亚洲一区二区| 欧美精品久久久天堂一区| 国产精品无码免费一级毛住a| 国产精品区第二页尤自在拍| 蜜桃久久精品一区二区| 色综合人妻中文字幕精品系列| 春色校园激情综合另类| 国产日韩精品专区免费| 人人妻人人爽人人澡av毛片| 色婷婷亚洲一区二区在线| 四虎国产永久免费视频| 中文字幕乱码十国产乱码| 久久久久亚洲精品国产av麻豆| 动态强干叉美女小穴视频| 国产高清无码在线一区二区| 东北人妻丰满熟妇av无码区| 国产福利精品蜜臀91啪| 青青国国产视在线播放观看91| 美女扒开双腿被捅的视频| 欧美日韩精品在线观看| 看日逼的看日逼的看日逼的看日逼 | 精品国产av一区二区三区蜜臀 | 美女露出逼让男生用鸡巴捅| 一区二区三区毛片国产一区| 好吊视频免费在线观看| 日韩情色电影中文字幕| 国产中文字幕最新一区| 伊人久久大香线蕉亚洲av| 国产精品高颜值18禁| 亚洲精品美女在线观看播放| 久久天天躁狠狠躁夜夜婷 | 精品国精品国产av自在久国产| 欧美高清视频在线播放| 色综合久久88色综合久久天| 高清一区二区中文字幕| 人成网av精品自在自拍| 国产黄片一级二级三级| 免费观看又色又爽又黄的| 国产黄片久久免费观看| 情激情综合亚洲欧美专区| 国产偷国产偷亚洲高清| 国产黄色一级大片全集| 粉嫩女大学生自慰喷水白虎小穴| 亚洲美女一区二区暴力吞精 | 日本到在线高清视频观看| 少妇一夜一次一区二区| 国产成人精品自产拍在线观看| 99久久精品99久久精品视频| 欧美a级黄色中文字幕手机在线| 无情的大屌操骚穴的视频| 久久天天躁狠狠躁夜夜婷| 欧美日韩国产一二三四区永久在线| 美女脱光衣服露出奶头和尿头吊嗨 | 亚洲最大最粗最猛视频| 米奇8888在线精品视频| 国产传媒天美av一区二区三区| 国产黄色网页在线观看| 欧美日韩午夜在线一区| 欧美a级黄色中文字幕手机在线| 女人下面视频骚粉骚逼操| 欧美成人高清视频性生活| 国产极品尤物内射在线| 国产蜜臀大码av影院| 91青青草原免费观看| 一区二区三区在线观看日本| 欧美日韩国产一二三四区永久在线| 日韩情色电影中文字幕| 久久精品国产亚洲av影片| 在线观看免费完整版日本| 深夜福利一区二区在线观看| 人人爽人人澡人人人人妻| 色哟哟在线观看中文字幕| 米奇8888在线精品视频| 国产一区二区三区三洲| 自拍偷自拍亚洲一区二区| 国产综合色在线视频观看| 久久精品国产99久久6动漫欧| 亚洲国产精品成av人| 蜜桃99视频在线观看| 啊用力快点我高潮了视频| 夜夜躁日日躁狠狠久久av乐播| 老司机永久在线免费看视频| 久久精品亚洲国产日韩 | 国产人成91精品免费观看| 日日摸夜夜添夜夜添亚洲女人| 欧美日韩中文精品在线| 日本黄色一区二区三区| 一级做a爰片久久毛片毛片| 91精品极品在线免费观看| 色偷偷人人澡久久超碰91蜜臀| 性感骚女爆射搞基喷水操软件下载| 香蕉av秘 一区二区三区| 亚洲av日韩av天堂无码| 亚洲一区二区黄色录像 | 美日韩一级片欧美一级片| 成人深夜在线观看免费视频| 国际b站免费直播入口MBA智库| 另类艳情双性人妖视频网站| 插烧女人屁眼视频在线观看| 人妻在线有码中文字幕| 中文人妻无码一区二区三区在线| 女人下面视频骚粉骚逼操| 久久999精品米奇久久久| 人妻久久久一区二区三区视频| 又黄又爽有无遮挡的网站| 99久久婷婷国产综合精品免费| 公车好紧好爽再搔一点浪一点| 伦理片免费在在线视频观看| 亚洲精品在线韩国日本| 91久久精品美女高潮喷白桨 | 美女被草视频免费网站| 97精品久久九九中文字幕| 美女脱光衣服露出奶头和尿头吊嗨 | 蜜臀视频免费国产在线视频| 欧美高清精品视频在线| 99久视频在线观看免费| 91青青草原免费观看| 人妻精品久久一区二区| 国产亚洲综合一区二区| 操逼肥的一线天白虎女人| 国产成人久久精品麻豆一区| 欧美高清视频在线播放| 中文字幕亚洲精品激情欧美| 中国一级全黄的免费观看| 久久国产一级黄色片子| 伊人久久综合大杳蕉中文无码| 九九热6这里只有精品视频| 神马午夜伦理精品亚洲| 美女扒开大腿让人桶免费看| 中国一级毛片免费看视频| 一本到在线观看免费收看| 草草影院黄色在线观看| av网站在线观看亚洲国产| 风韵丰满熟妇啪啪老熟女| 亚洲婷婷熟妇熟女在线| 少妇中出中文字幕久久久| 国产精品自在在线午夜精华在线| 韩国矫正暴力一级操逼网 | 亚洲精品中文有码字幕| 国产真实乱免费高清视频| 国产高清白丝在线观看| 国产精品我不卡在线观看| av亚洲中文字幕精品| 五月天丁香花婷婷狠狠热| 亚洲欧美日韩一区二区三区情侣| 插日日操天天干天天操天天透| 五月婷婷丁香激情对白一区二区| 五月婷婷丁香激情对白一区二区| 精品中文字幕一级久久免费 | 久久婷婷好好热日本手机| 国产亚洲精品免费专线视频| 在线日韩一区二区三区不卡| 在线观看免费完整版日本| 国产精品成人久久综合| 水蜜桃美女对机机小骚逼 | 国产一区二区精品播放| 日韩av天堂手机在线观看| 正在播放国产无套露脸视频| 亚洲黄色成人av在线电影| 女自慰喷水大学生高清免费看| 男女互射视频在线观看| 亚洲熟女av一区二区三区| 久久香蕉免费国产天天看| 99国产精品九九视频免费看| 在线日韩一区二区三区不卡| 中国亚洲女人69内射少妇| 国产精品v日本精品v欧美精品| 成人精品一区二区三区不卡| 亚洲欧美国产日韩专区| 免费无码va一区二区三| 午夜伦理视频免费观看| 日韩av不卡在线播放| 草草影院黄色在线观看| 国产女主播作爱在线观看| av午夜精品一区二区三区| 亚洲国产精品成人综合片| 性生活AV在线直播成人社区| 男生操女生的逼视频海量免费| 日韩精品无乱一区二区| 日韩av不卡在线播放| 大屁股迷人少妇在线观看| 夫目中文字幕一区二区| 五月天丁香婷婷狠狠狠| 五十老熟女高潮嗷嗷叫| 国产va免费精品观看精品视频| 亚洲欧洲日韩另类99在线| 91麻豆国产自产在线观看亚洲| av在线播放亚洲天堂| 巨乳av在线免费观看| 亚洲国产午夜福利视频| 中文人妻av一区二区| 青青青在线视频免费播放| 国产黄片久久免费观看 | 亚洲一区日韩二区精品| 美女被草视频免费网站| 91综合精品国产九色| 五月婷婷在线直播视频免费观看| 久久偷拍情侣激情视频| 国产在线观看一区二区三| 激情五月天丁香啪啪综合| 无码无羞耻肉3d动漫在线观看| 日韩中文字幕视频一区| 91中文字幕国产精品| 搭讪人妻中文字幕系列| 亚洲香蕉视频综合在线| 日本高清中文字幕免费二区| 欧洲免费无线码在线观看土| 三级网站一区二区三区| 女性下体被男性猛进猛出的视频| 成年美女黄网站大片免费| 欧美性生活欧美性生活| 日韩欧美人妻之中文字幕| 97精品在线视频播放| 国产主播精品一区二区三区| 免费观看av在线播放| 香港三级日本三级五月婷 | 夫妻性生活一级黄色大片| 中文字幕一区二区三区乱码| 极品美女高潮精品16p| 欧美日韩亚洲一区二区在线| 亚洲伊人情人综合网站| 中文字幕乱码熟女人妻| 日本肥老熟妇在线观看| 好吊妞一样的免费视频| 午夜老湿机福利免费观看| 99国产成人精品视频app| 国产免费av片在线观看| 亚洲欧美日韩欧美一区二区三区| 免费观看黄色a一级录像| 久久久久亚洲精品国产av麻豆 | 2022AV亚洲天堂在线观看| 999国产精品永久免费视频| 88v中文字幕熟女人妻一区| 一区二区三区最新中文字幕| 丁香婷婷激情综合俺也去| 欧美系列一区二区三区在线播放| 亚洲精品不卡一二三区| 国产白嫩无套视频在线播放蜜桃| 男生操女生的逼视频海量免费| 黄色三级三级三级免费观看| 午夜视频国产一区二区三区| 丰满人妻少妇被猛烈进入| 嗯啊男人捅女人小穴视频| 中文字幕亚洲精品激情欧美| 国产日韩欧美亚洲专区| 97精品视频在线观看| 久久精品国产亚洲av护士长| 成人免费淫片在线观看免费| 亚洲人尤物视频在线观看| 操逼内射女生免费视频黄片| 亚洲毛片成人在线观看| 国产中文字幕有码视频| 无码无羞耻肉3d动漫在线观看 | 操逼激情破处大鸡吧插进| 鸡鸡插屁股视频日韩在线免费观看| 国产人碰人摸人澡人视频| 超碰插你激情免费在线| 国产一区日韩精品二区| 17岁日本免费完整版观看| 91久久精品一区二区三区色欲| 91久久精品美女高潮喷白桨| 人妻熟女一区二区三区在线| 绿奴舔屁眼哦哦哦操我啊哦哦哦 | 97精品日韩欧美一区二区三区| 两个人免费观看日本的完整版| 大鸡吧操我纸牌视频啊啊啊| 天堂a免费视频在线观看| 亚洲国产日韩欧美综合在线| 操 骚逼 骚逼 操骚逼 操骚逼| 国产精品午夜免费福利| 蜜臀av国内精品久久久久久久久| 日韩午夜一区二区三区| 三级电影在线观看不卡| 日本成人午夜福利电影| 亚洲欧美国产专区在线观看| 好爽好硬进去了好紧视频| 国产一级a级高清性较视频| 国产一区二区精品播放| 91精品人妻一区二区蜜桃| 亚洲va久久久久久久精品综合| 国产三级精品在线不卡| 伊人2222成人综合网| 啊啊啊小穴好痒逼逼视频| 男人的天堂av免费社区| 俄罗斯精品无码一区二区| 男人把女人捅到爽爆免费视频 | 五月婷婷六月丁香激情综合网| 国产精品久久久久久妇女免费| 操白虎护士小骚逼的视频| 美女主播视频福利一区二区| 久久这里只有偷拍精品视频 | 国产富婆高潮一区二区| 亚洲综合国产伊人五月婷| 欧美一级久久久一区二区| 日本中文一二区有码在线| 亚洲精品美女在线观看播放| 伊人久久大香线蕉亚洲av | 男人的天堂一级毛片视频| 又大又长又黄又粗又爽的视频| 日韩午夜一区二区三区| 少妇高潮喷水久久久久久久久久 | 亚洲欧美在线视频第一区第二区| 综合亚洲欧美一区二区三区| 亚洲国产欧洲综合997| 亚洲色图偷拍一区二区| 久久香蕉免费国产天天看| 国产中文字幕在线免费观看| 激情一区二区三区四区| 国产人妻久久精品二区三| 91性高久久久久久久久久久| 伊人久久大香线蕉亚洲日本强| 91中文字幕国产精品| 中文字幕黄色片在线观看| 国产激情高中生呻吟视频| 一级a做片免费观看久久| 三级网站一区二区三区| 无码少妇一级av片在线观看| 男人鸡巴插进女人B里的视频| 亚洲五月婷婷中文字幕| 99热这里只有精品网站 | 97视频精品免费观看| 中文字幕在线观看欧美日韩| 嗯啊不要用力操逼视频cable| 无遮挡男女一进一出视频真人| 美女又爽又喷奶观看免费| 青青青在线视频免费播放| 国产日本亚洲一区二区| 欧美a级黄色中文字幕手机在线| 久久综合九色综合色多多| 国产三级精品在线不卡| 寂寞少妇让水电工爽了一| 国产中文字幕日韩精品| 久久免费视频久久免费视频99| 97精品国产自产在线观看永久| 白嫩美女在线日韩专区| 国产精品午夜久久久久久久密桃 | 中文无字幕一区二区三区| 国产精品毛片高清在线完整版| 超碰98人人插完整版在线观看| 黄色段片一区二区三区| 男生把小鸡鸡插到女生阴巢的视频| 91精品久久久老熟女九色9| 能看美女逼的网页免费看| 国产视频一区二区三区免费看| 91中文字幕国产精品| 亚洲人尤物视频在线观看| 欧美熟妇另娄久久久久久 | 日韩在线国产一区二区 | 在线视频自拍日韩精品一区| 国产精品免费网站免费看| 搡女人真人视频不用下载| 日韩推理片2021电影在线观看| 中文字幕在线观看欧美日韩| 午夜99精品一区二区三区| 91在线免费在线观看| 久久免费看美女高潮视频| 亚洲中文在线视频观看| 饥渴少妇高潮露脸嗷嗷叫| 激情毛片av在线免费看| 青青草99久久这里只有精品| 最新精品亚洲成a人在线观看| 国产亲近乱来精品视频| 国产农村av对白观看| 精品人妻一区二区三区mp4| 亚洲中文字幕有码视频| 精品人妻伦九区久久69| 美味人妻手机在线观看| 国产黄色网页在线观看| 学生妹被爽到高潮受不了视频| 精品人妻一区二区三区中文字幕 | 亚洲精品偷拍自综合网| 久久这里只有视频精品 | 91福利国产在线观看香蕉| 欧美二精品二区免费看| 国产精品无码久久综合网| 丰满熟女少妇一区二区三区| 这里都是精品熟女内射| av日韩精品在线观看| 国产精品大片在线播放| 欧美成人高清视频性生活| 五月婷婷六月丁香深爱| 亚洲三级成人一区在线| 裸体女人啊啊啊啊射了好多人啊 | 亚洲精品在线韩国日本| 蜜臀在线观看免费视频| 成人久久av一区二区| 综合成人欧美网日韩青椒网| 久久亚洲精品成人在线| 欧美视频中文字幕视频日韩视频 | 中文字幕有码久久高清| 国产日韩人av在线播放| 欧美日韩中文精品在线| 中文人妻熟妇精品乱又伧老牛在线| 国产综合精品一区二区| 久久精品日本一区三区| 美女粉嫩的逼被操到喷水| 绝顶人妻中文字幕精品一区| 美女av一区二区三区| 欧美大鸡巴猛插肥婆视频| 啊啊啊啊啊啊啊啊操我啊啊啊免费 | 国产女人喷浆抽搐高潮视频| 男女鸡巴插黄激情视频欧美| 日本五十路熟女啪啪啪| 免费黄色国产精品日更| 国产三级在线观看官网| 国产精品久久久久精品三级下载| 成人两性生活免费视频| 国产精品九色蝌蚪自拍| 十八禁真人无摭挡观看| 欧美日韩人妻精品一区二区在线| 91综合精品国产九色| 日韩 国产 精品 亚洲 欧美 | 大鸡巴不停抽插双插喷水漫画视频| 蜜桃久久精品一区二区| 日韩色视频一区二区三区亚洲| 国内少妇人妻精品视频| 99国产精品久久久久久| 久久精品av免费观看| 懂色av免费在线播放| 免费 无码 国产在线观| 亚洲av情网站在线观看| 亚洲国产精品一区二区三区四区| 欧美日韩亚洲人妻在线| 久久免费亚洲免费视频| 亚洲人妻av一区二区 | 综合色欲久久精99999| 日本视频一区二区免费在线观看| 久久精品国产亚洲夜色av| 亚洲国产中文剧情av鲁一鲁| 亚洲AV成人无码网天堂| 国产亚洲一区二区视频在线| 日本黄色一区二区三区| 中文字幕日韩精品免费看| 亚洲和欧洲一码二码区视频| 午夜男女爽爽刺激视频在线观看 | 在线观看性生活免费看| 麻豆国产成人AV高清在线观看| 可以免费看的欧美黄片| 国产日韩人av在线播放| 大鸡巴操大人体逼的视频| 亚洲AV成人无码网天堂| 日韩精品女性三级视频| 亚洲av日韩av天堂无码| 午夜福利片国产精品张柏芝| 裸体女人啊啊啊啊射了好多人啊| 果冻传媒精选麻豆二区| av日韩精品在线播放| 天堂a免费视频在线观看| 啊啊啊啊啊啊啊啊操我啊啊啊免费 | 七月婷婷精品视频在线观看| 四虎国产永久免费视频| 国产在线视频一区二区不卡 | 日本人妻免费在线观看| 淫妇小穴好爽啊出水视频| 又嫩又硬又黄又爽的视频| 久久66热re国产毛片基地| 久久人人做人人妻人人玩| 无情的大屌操骚穴的视频| 四虎永久精品在线免费| 成年免费A级毛片天天看| 国产自拍偷拍在线福利| 久久免费视频久久免费视频99| 中文字幕久久久人妻人区| 国内精品久久人妻白浆| 又嫩又硬又黄又爽的视频| 日本女优禁断视频中文字幕| 亚洲国产日韩欧美综合在线| 在线播放国产精品口爆| 亚洲国产精品免费线观看| 亚洲国产成人精品一区91| 插烧女人屁眼视频在线观看| 男人捅开女人的逼国语对白|