操逼啊口爆啊rrr中途啊免费-中文字幕av网一区二区-中文字幕久久精品波多野结百度-国产三级视频在线观看

雙極性晶體管

二極管

ESD保護(hù)、TVS、濾波和信號調(diào)節(jié)ESD保護(hù)

MOSFET

氮化鎵場效應(yīng)晶體管(GaN FET)

絕緣柵雙極晶體管(IGBTs)

模擬和邏輯IC

汽車應(yīng)用認(rèn)證產(chǎn)品(AEC-Q100/Q101)

IAN50004 - Using power MOSFETs in DC motor control applications

This interactive application note aims to give some general insights into how to drive a DC motor using Nexperia Power MOSFET devices.

Authors: Andrei Velcescu and Christian Radici; Application Engineers, Manchester

This interactive application note contains embedded Cloud based simulations to augment the text.

To open the embedded simulation, simply hover over the simulation image. Left click anywhere in the graphic area once the central play button changes in colour. This opens the schematic in the Cloud environment. See the interactive application note tutorial page for more details on how to use the simulations. See accompanying application note: AN50004.

Download AN50004

1. Introduction

Within the automotive environment, Brushed Direct Current (DC) motors play an important role in the control of many applications within the car such as mirror folding control, window lifter, seat control, sunroof and power tailgate control, as well as oil, fuel and water pumps.

Figure 1. DC motor automotive applications

This interactive application note includes simulations of DC motor control and details the modeling of the motor used in the simulations.

2. Relay replacement in a power-folding mirror assembly

In modern automotive applications, an average of about 30 relays are used in a car. Driving a relay is simple, and the internal resistance of the connection can be very low. However, compared with relays, MOSFETs have obvious advantages in noise, service life, miniaturization and reliability. Therefore more and more manufacturers consider using MOSFETs to replace relays.

Figure 2. Relays replaced with MOSFETs

Fig. 2 a) is a motor scheme that mainly uses relays for motor drive. The direction of the motor rotation is selected by the contact of the relay. However, the relay cannot control the current of the motor, so it still needs to be connected to a MOSFET to control the current, so as to meet the functional requirements of anti-pinch.

Fig. 2 b) is a scheme that directly uses MOSFETs to drive the motor. The direction of motor rotation can be controlled using only one MOSFET, while the other MOSFET can be switched by PWM to control the motor current.

A Nexperia demo application which showcases how MOSFETs may replace relays may be seen in Fig. 3. These were used in controlling the mirror power-folding mechanism using 12 V or 24 V H- bridge DC motor control. As can be seen, the relays were replaced with MOSFETs in the LFPAK33, LFPAK56D and LFPAK56 small SMD packages.

Figure 3. Relay replacement demo board

By using any of the power MOSFET variants, there will a space reduction of up to 1:100 in terms of volume, 1:10 in terms of board area and 1:20 in terms of weight. This is depicted by the orange highlighted area in Fig. 3 versus the yellow highlighted area. In terms of performance, the LFPAK MOSFETs will offer high current handling for locked rotor protection, high reliability and full Automotive Qualification AEC-Q101. Lastly, the copper clip within the LFPAK MOSFETs offers a good thermal performance.

 Motor armature equivalent circuit
Figure 4. Motor armature equivalent circuit

3. Brushed Direct Current motor modelling

The DC motor is a common actuator in the automotive environment and in order to understand how to better choose the MOSFETs controlling it and their ratings as well as obtain the wanted behaviour from the motor, it was modelled as shown in Fig. 4. Moreover, as it will be seen later, the motor characterisation was conducted in order to have a representative example.

Click below to enter the simulation.

Simulation 1.

In simulation 1, a DC motor is connected to a DC voltage source of 5 V. This shows that the rotational speed of this particular motor is 103.2 rad/s. Considering the inner structure of the DC motor one can consider its armature circuit, (as can be seen in Fig.4). This contains its electric resistance (Ra), inductance (La) as well as back EMF (e). Moreover, the rotor mechanical constants are also shown as: motor torque (T), rotor angle (θ) and rotor inertia (J). Taking these into consideration and applying some circuit analysis techniques such as Kirchhoff’s voltage law, gives Eq. 1 below:

(Eq 1) 

In this case is the input voltage to the DC motor and the one supplied by the H-bridge which is formed by 4 MOSFETs within 2 half-bridges in order to obtain bi-directional control.

Considering the magnetic field as constant, the torque produced by the DC motor will thus be proportional to the armature current and the motor torque constant KT. This may be seen in Eq. 2 below:

(Eq 2) 

 

Moreover, the back EMF is proportional to the rotor velocity /dt and the back EMF constant K , as shown in Eq. 3 below:

(Eq 3) 

As it is considered that the torque and back EMF constants are equal, the following equality may be given: KT = Ke = K.

Based on the above equations the motor output torque and speed may be approximated by knowing the motor constants. This may be found using the motor data sheet or by measurement. More information about how some of the constants were determined for an example DC motor will be given later.

4. H-bridge theory

The H-bridge, also known as full-bridge, is an electronic system consisting of four switches and capable of creating a bidirectional current and reversible voltage across its load. This function comes in handy when driving a motor because it allows to change the direction of its rotation and, if the application allows it, even to use it as a generator. This circuit is used in many systems such as in inverters (DC/AC), regulators (DC/DC) and class-D amplifiers.

The H-bridge can be thought of as composed of two half-bridges used simultaneously. The half-bridge is capable of bi-directional current but not reversible voltage and therefore, it is mainly used in motor drive applications with single direction motors such as oil pump motors and small fans.

4.1. Modes of switching

The easiest and most popular way to drive a DC motor using a H-bridge is by using pulse width modulation (PWM). Here the MOSFETs are switched at a constant frequency with a control signal having variable duty cycle. This allows the average voltage across the motor to vary and thus control the rotor angular velocity. The MOSFETs in a H-bridge can be switched in different sequences to provide the desired voltage polarity. There are two common modes: bipolar and unipolar.

Figure 5. Bipolar drive H-bridge switching

The bipolar drive allows two MOSFETs to be switched ON at a time. For example for positive current (from node A to node B) both Q2 and Q3 are turned ON. Whereas, for negative current, Q1 and Q4 are turned ON. The direction of the current is chosen by activating one or the other couple of FETs while applying a voltage across the motor that varies between VDC and -VDC, with an average value that depends on the duty cycle (δ), see Fig. 5.

A time delay, known as dead-time, must be set between the turning OFF of one pair and the turning ON of the other pair, in order to avoid cross-conduction (or shoot through), that is shorting the supply.

Due to the magnetic field build up in the motor, during the delay phase some current will continue to flow, even though all the devices are turned OFF, by recirculating through the MOSFETs body diodes.

Figure 6. Unipolar drive H-bridge switching

The unipolar drive scheme, instead, allows for the current to be regulated by keeping ON one right side MOSFET (Q2 or Q4) while switching only one left side MOSFET(Q3 or Q1). In its simplest form it allows for the elimination of the dead time which reduces the complexity of the driver circuit. For the same reason described in the bipolar drive some current will be forced to flow through one of the MOSFETs body diode when the switching MOSFET is turned OFF, see Fig. 6.

If we assume Q3 switching and Q2 turned ON, then when the former is switched OFF the current will flow through Q1 body diode. In order to decrease the loss caused by the diode voltage drop, Q1 can be switched ON while Q3 is OFF. In this case a proper dead-time constraint must be respected.

One of the major difference with the bipolar drive scheme is the fact that the voltage across the motor will have an amplitude of only VDC. As a consequence the peak of the ripple current through the motor ends up being half of the one found for the bipolar case, thus leading for lower losses in the motor itself

5. Circuit simulation

Based on the technical note TN90002 and on the hardware seen in Fig. 7simulation 2 was created. This focuses on the H-bridge part containing 4 Nexperia LFPAK56 MOSFETs, the BUK7Y7R8-80E.

Figure 7. Experimental setup with motor and control board

Figure 8. Schematic of motor drive circuit simulation

The simulated circuit may be seen in Fig 8. This focused on the behaviour of the MOSFETs and thus the logic circuit was approximated using a Digital Pulse Source, a Digital Inverter, AND gates, Buffers and Digital to Voltage blocks. Additionally the PWM generators were set to one of the frequency options used in the TN90002, 15.6 kHz. Similarly, 10 Ω gate resistors were used.

6. Logic and MOSFET gate signals

Investigating the schematic shown in Fig. 8 from left to right, one may see the Digital Pulse Source. This is used as an input which dictates the direction in which the motor rotates and the time for which this happens. This input signal, seen as the green trace in simulation 2 replaces a person’s interaction when using the buttons, as in TN90002. The logic signal is set to 1 for 150 ms. In this manner the motor is rotating clockwise. Due to this, Q2 is fully switched ON for this duration and Q3 is switched ON and OFF using the PWM generator. Moreover, Q1 was pulsed with the inverted PWM signal delivered to Q3 in order to reduce the voltage drop on the diode of Q1. In this manner the top MOSFET, Q1, is freewheeling the motor current. If this was not the case and Q1 was OFF the losses would be higher. The control signals for Q1 and Q3 may be seen in simulation 2 as the blue and red traces whereas the ones for Q2 and Q4 may be seen as the light blue and purple traces.

Click below to enter the simulation.

Simulation 2.

As mentioned, due to Q3 switching, a dead time was also required. Considering the signals of Q1 and Q3 as well as for Q2 and Q4 from simulation 2 the used dead time was 2 µs, whereas the one set within the TN90002 was 2.5 µs. This was implemented using the Buffer blocks seen in Fig. 8. Moreover, the 15.6 kHz PWM signal was set to a duty cycle of 12.5%.

Once the logic driving signal reached the Digital to Voltage Converter, a 10 V signal was generated in order to switch ON and OFF the four BUK7Y7R8-40E MOSFETs of the H-bridge.

Click below to enter the simulation.

Simulation 3.

In simulation 3 above, the gate voltages of the respective MOSFETs of the H-bridge may be seen. The MOSFETs forming the left half-bridge, Q1 and Q3 have been switched using PWM whilst Q2 and Q4 have been turned ON or OFF fully for the respective durations. Notice the plots of VGS_Q1 and VGS_Q3 , one can again see the dead time implementation.

Simulation 4 below shows the drain-to-source voltages of the MOSFETs within the left half-bridge may be seen, as well as their respective drain currents. These have been shown for a time window of approximately 100 µs in order to focus the attention to the switching behaviour. Moreover, by multiplying the drain-to-source voltage of Q3 by its drain current, seen in simulation 4 the instantaneous power dissipation was obtained. This data can be averaged and used for the derivation of the FETs thermal behaviour, via a suitable RC network (Foster or Cauer). In order to find the average or rms power one can consult the Wave Viewer and Math operations sections within the tutorial page.

Click below to enter the simulation.

Simulation 4.

7. Motor characterisation and constants

In order to simulate the behaviour of the H-bridge controller demo previously explained the motor characteristics had to be extracted so that for a specified PWM duty cycle the rotor speed in the simulation would match the one of the real application.

The rotor dimensions were measured and by approximating its shape to a cylinder its moment of inertia was found using Eq. 4 where m = rotor mass and r = rotor radius:

(Eq 4)  

For this particular motor the rotor was measured to weigh 220 g and to have a radius of approximately 17 mm, thus yielding an approximately 3.15x10-5 kg·m2 moment of inertia. Additionally the plastic disc was found to have a moment of inertia of approximately 3.5x10-6 kg·m2. By adding the two, the total inertia was found to be 3.5x10-5 kg·m2.

Using a DMM, the winding resistance was measured to be approximately 1.5 Ω. This was also found by conducting a motor stall test and from the step response of the DC motor seen in Fig 9.

(Eq 5) 

Figure 9. DC motor step response

Additionally the electrical time constant of the motor ??, is found using Eq 6. At 63.2% of its steady state value the current in Fig. 9 reaches approximately 1.5 A (Eq 7, Eq 8) This happens at approximately 0.39 ms. Using ?? and the value obtained for the motor winding resistance the winding inductance was found to be approximately 600 µH.

(Eq 6)  

(Eq 7)  

(Eq 8)  

By conducting several measurements the motor’s rotational speeds were found at different voltages as well as the currents and voltages. From these, the motor’s KV and Ke values were inferred and thus the KT value was found to be approximately 0.045 Nm/A.

For the DC motor the following are considered as motor constants (Eq 9):

(Eq 9) 

Lastly, another important parameter was the viscous drag which was found to be approximately 0.0001 Nm/(rad/s). At this stage the motor was characterised and thus expected to behave as the real one presented in the technical note TN90002.

When tested, the real system was found to achieve a rotational speed of approximately 6 RPS or 360 RPM which translated to approximately 37.7 rad/s. The board supply voltage used was 20 V, the PWM frequency, 15.6 kHz and a duty cycle of 12.5%.

Simulation 5.

In the above simulation the motor steady state velocity may be seen. The rotational  speed was found to be approximately 40 rad/s which is similar to the 37.7 rad/s seen in the real  application from Fig. 7. Additionally the motor current and torque for the full simulation period of 150 ms could also be seen and further investigated in the simulation window. In simulation 5 one may see the motor voltage and current for a few PWM periods. These results are  similar to the oscilloscope results of the real system in Fig. 10.

Figure 10. Oscilloscope screen shot of motor voltage and current

8. MOSFETs recommendations by application

Some MOSFET recommendations are given below for applications using half-bridge and H-bridge configurations for motor control. The aimed applications are: mirror folding control, window lifter for anti-pinch function, seat control, sunroof and power tailgate control as well as fuel, water and air pumps.

8.1. Power folding mirror

Some MOSFETs that are recommended for this 12 V or 24 V H-bridge application are summarised in Table 1.

8.2. Window lifter for anti-pinch function

For this application the MOSFETs and system may be required to have low on-state losses, overcurrent protection, low thermal resistance and low thermal impedance as well as the need to be integrated into a relative small board area. The control uses PWM with frequencies ranging from 10 to 20 kHz. Motor currents of around 2 A to 5 A are expected for normal operation and operation around 10 A for shorter periods of time. In locked rotor cases, the current demand is much higher and may reach 30 A for periods ranging from 200 ms to 1 second.

Figure 11. MOSFETs in seat motor control application

8.3. Window lifter for anti-pinch function

For this application the MOSFETs and system may be required to have low on-state losses, overcurrent protection, low thermal resistance and low thermal impedance as well as the need to be integrated into a relative small board area. The control uses PWM with frequencies ranging from 10 to 20 kHz. Motor currents of around 2 A to 5 A are expected for normal operation and operation around 10 A for shorter periods of time. In locked rotor cases, the current demand is much higher and may reach 30 A for periods ranging from 200 ms to 1 second.

8.4. Seat control

In the seat control application two motors are sometimes required, one for the forward and backwards seat adjustment and another for the backrest support adjustment. A schematic of the two H-bridges may be seen in Fig. 11.

More complex circuits may be encountered in high end car models where several other motors are required in order to control things such as height, the left and right chair sides and the head rest position.

8.5. Sunroof and power tailgate control

There are a few motors in sunroof and power tailgate applications. The motors can control the sunroof forward/backward and up/down, therefore the driving stage is required to allow bidirectionality. Both brushed and brushless DC motors can be used in this application, the former driven by a H-bridge (Fig. 12) and the latter using a multiphase half-bridge (Fig. 13). The maximum current needed for this kind of application may be around 10 A for the more power hungry ones.

Figure 12. H-bridge MOSFETs in sunroof motor control Figure 13. 3-phase MOSFETs in sunroof motor control

 

Figure 14. MOSFETs in pump motor control applications

8.6. Fuel, water and air pumps

There are a number of pumps used in automotive applications, such as fuel, water and air pumps. Both brushed and brushless DC motors can be suitable for this application. For the former a simple half-bridge structure can be used (Fig. 14). In some small current load applications, the recirculating FET can be replaced by a Schottky diode. For brushless motor a more comple structure of 3-phase bridge is required Fig. 13. In this case the difference in complexity and number of components can be quite stunning.

Since different motor applications have different power levels, from a small 30 W pump to a 300 W intake fan, the demand for power MOSFETs varies. Due to the many advantages of brushless motors more and more small water pump motors have now adopted the brushless scheme. Here, due to the large number of MOSFETs, we recommend the use of smaller packages such as the LFPAK33 and the LFPAK56D (dual devices) MOSFETs for motor drive. The 40 V device is suitable for the application of most 12 V motors. The specific model selection calls for the appropriate packaging and internal resistance, according to the load power of the motor and the overall cooling requirements of the module. Standard level VGS threshold is suggested.

Applications

System recommendations

MOSFET characteristics

MOSFET recommendations

Power folding mirror  
  • Low on-state losses

     

  • Over-current protection

     

  • Small footprint
 
  • RDSon

     

  • ID,IDM

     

  • LFPAK56, LFPAK56D, LFPAK33
 BUK7Y3R5-40E
 BUK7K6R2-40E
 BUK9M14-60E
Window lifter for anti-pinch  BUK7Y4R4-40E
 BUK7K6R8-40E
 BUK7M6R0-40H
Seat control  BUK7Y3R5-40E
 BUK7M6R0-40H
 BUK7K6R2-40E
Sunroof and power tailgate control  BUK7Y3R5-40E
 BUK7Y4R4-40E
 BUK7K6R2-40E
 BUK7M6R0-40H

Table 1. Recommended MOSFETs for automotive motor control applications

9. Summary

The main applications of DC motors and MOSFET recommendations have been discussed.

Nexperia offers many suitable options for the most popular applications. DC motor modelling and characterization has been presented, which can be used to better predict the performance of the driving circuitry and the selection of the necessary components. Theoretical and practical notions of H-bridge have been outlined, in particular methods of implementing PWM, motor ripple current, MOSFET dissipation and switching frequency selection.

Finally an example from the technical note TN90002 has been presented. Its main features and operational concept have been summarized and further aspects clarified in more details. Interactive simulations of this system have been embedded into this application note to assist in understanding the driver and power stage operation.

PartQuest embedded Cloud simulations were used in this interactive application note.

Page last updated 28 September 2021.
欧美人妻精品一区二区三区99| 青青草青娱乐免费在线视频| 欧美激情视频一区 二区| 久久狼精品一区二区三区| 蜜臀av国内精品久久久久久久久| 白嫩美女在线日韩专区| 欧美日韩另类精品激情| 男人添嫩p视频在线观看| 懂色av噜噜一区二区| 免费黄色国产精品日更| 久久66热re国产毛片基地| 国产精品亚洲福利在线| 国产精品视频每日更新国产清纯| 久久热福利视频就在这里| 国内精品国产成人国产三级 | 嗯啊啊大鸡巴快用力肏我视频| 日日噜噜噜噜夜夜爽亚洲| 亚洲欧美日韩欧美一区二区三区| 精精国产xxxx视频在线不卡| 中文字幕日本人妻束缚视频| 亚洲大陆免费在线视频| 色久悠悠在线观看视频| 97人人视频波多野结衣蜜月| 黄色顶级男和女性视频毛视频| 中文字幕乱码十国产乱码| 亚洲美女一区二区暴力吞精 | 国产裸体美女永久免费无遮挡| 青青草99久久这里只有精品| 一区二区三区激情在线观看| 色帝国综合综社区偷拍| 久久天天躁狠狠躁夜夜婷 | 91九色成人在线观看| 男生把小鸡鸡插到女生阴巢的视频 | 亚洲AV无码专区片在线观看 | 嗯啊不要用力操逼视频cable| 色偷偷的亚洲男人的天堂| 丰满少妇被粗大猛烈进人高清| 国产蜜臀大码av影院| 99久久无色码亚洲字幕| 99热这里只有精品网站| 激情国产AV麻豆凡V换脸| 免费人成视频app不收费| 伊人天堂午夜精品草草网| 国产尤物av一区在线| 亚洲一区二区黄色录像| 99热这里只有精品网站| 日韩精品视频在线观看的| 人妻内射一区二区在线视| 一区二区三区亚洲精品| 国产 中文字幕 欧美 日韩| 91中文字幕在线永久| 免费成人在线不卡视频| 亚洲色图偷拍一区二区| 日本是全亚洲最发达的国家| 久久久成人亚洲精品无码| 久草福利资源在线播放| 男女男精品视频免费体验| 亚洲成人自拍在线视频| 久久999精品米奇久久久| 久久99精品久久久久久手机免费| 日韩 国产 精品 亚洲 欧美 | 嗯啊啊大鸡巴快用力肏我视频| 国产亚洲综合一区二区| 色欲av一区二区三区精品| 91久久精品美女高潮喷白桨| 久久精品国产亚洲av护士长 | 大陆猛男大鸡巴操骚美女骚逼视频 | 成年女人午夜毛片免费视频| 大鸡巴插入少妇骚穴视频| 久久综合97丁香色香蕉| 国产精品一区二区大白腿| 久久久久久无码精品大片| 天堂av一二三区在线播放| 欧美情欲片一区二区三区| 亚洲精品一区二区毛豆| 日本人体精品一区二区三区视频| 韩国成人台湾天堂在线| 国产精品亚洲综合第一区| 正在播放国产呦精品系列| 青青草原在线视频首页网站| 青青草99久久这里只有精品| 午夜视频国产一区二区三区| 国产精品亚洲福利在线| 国产富婆高潮一区二区| 精品国产三级国产普通话| 色婷婷综合五月在线观看| 日韩精品一区二区三区视频放| 久草手机在线观看视频| 草骚逼美穴骚逼美穴骚逼美穴骚逼| 日韩av高清不卡一区二区三区| 精品日韩一区二区三区| 久久久精品国产精品久久| 东北老女人被操的大声喊逼痒死| 国产另类在线欧美日韩| 91国产自拍在线一区| 日韩情色电影中文字幕| 欧美日韩一区二区成人在线| 中文人妻av一区二区三区| 视频一区中文字幕在线观看| 亚洲综合国产伊人五月婷| 亚洲和欧洲一码二码区视频| 日韩精品无乱一区二区| 国内综合视频一区二区三区| 香蕉av秘 一区二区三区| 欧洲亚洲综合一区二区三区| 国产精品有码av在线| 手机免费av片在线观看| 女优日本中文字幕五十| 91福利国产在线观看香蕉| 扒开老女毛荫荫的黑森林视频| 国产在线观看一区二区三| 在线观看日本一区二区三区四区| 91精品综合国产蜜臀久| 美女粉嫩的逼被操到喷水| 天天操夜夜一操免费看| 国产成人久久精品麻豆一区| 呃呃啊啊啊好爽快到了黄色| 伦理片免费在在线视频观看| 国产精品高清无遮挡网站| 欧洲日韩国产一区二区| 亚洲av一区一区二区三| 日韩欧美一级特黄大片| 国内精品久久久久久一区二区| 在线观看免费完整版日本| 精品亚洲456在线播放| 大屌骚逼射精发情少妇鸡巴| 免费观看av在线播放| 欧洲中文字幕日韩精品成人 | 国产99久久精品一区二区300| 亚洲色图偷拍一区二区| 久久精品亚洲国产日韩| 国产熟女激情视频自拍| 女人的天堂av网免费| 国产传媒第一页在线观看| 欧美特黄片在线免费播放| 51短视频精品全部免费| 色婷婷综合五月在线观看| 中文字幕 乱码 中文乱码视频| 亚洲色图偷拍一区二区| 国产美女人喷水在线观看| 日本高清视频不卡一区二区| 免费国产国语一级特黄aa大片| 亚洲AV无码专区片在线观看| 国产成人精品无人区一区| 黄色三级电影在线入口| 国产在线精品免费播放| 大鸡巴操白丝校花清纯小骚逼视频| 国产三级精品在线不卡| 99热这里只有精品网站| 51短视频精品全部免费| 中文字幕激情av电影| 国产女主播作爱在线观看| 大鸡巴操大人体逼的视频| 国产精品久久久精品免费| 色综合久久久中文字幕波多| 91福利国产在线人成观看| 韩国床震无遮挡免费视频| 国产肥熟女老太老妇A片| 裸体美女让男人桶免费视频| 66mio人妻精品一区二区三区| 正在播放女子高潮大叫要| 自由成熟性生活免费视频 | 国产精品91福利一区二区三区 | 操白虎护士小骚逼的视频| 欧美精品国产成人综合亚洲| 国产主播在线一区二区| 久久久久久精品国产一区| 国产午夜精品一区二区三区视频| 国产日韩一区二区不卡视频| 美味人妻手机在线观看| 国产a级久久久精品视频| 国产一级片大全免费在线播放| 国产精品日韩中文字幕| 男女激情视频网站免费在线| 淫荡骚货想让我射进她的骚穴视频 | 少妇一夜一次一区二区| 日韩爱爱视频在线观看| 亚洲av精品一区在线| 一本到在线观看免费收看| 韩国三级一区二区三区| 精品国产高清中文字幕| 东北老女人被操的大声喊逼痒死| 国产肥熟女老太老妇A片 | 青草精品视频在线播放| 国产区av一区二区三区| 欧美日韩艺术电影在线| 三级网站一区二区三区| 大鸡巴抽插女人骚逼视频| 亚洲五月婷婷中文字幕| 在线观看性生活免费看| 国产鲜肉帅哥大鸡巴操美女逼内射| 亚洲AV成人片色在线观看高潮| 久热这里只有精品视频4| 国产欧美成人精品一区二区| 大鸡巴操白丝校花清纯小骚逼视频| 国产视频三区二区在线观看| 亚洲人妻一区二区久久| 艳妇臀荡乳欲伦69调教视频| 国产97在线精品一区| 成年女人午夜毛片免费视频| 亚洲欧美另类丝袜在线| 国产精品自在在线午夜精华在线| 久久精品国产99久久久| 想看操真人老女人逼的视频| 男人的天堂一级毛片视频| 日韩av在线播放免费观看| 色综合久久88色综合久久天| 亚洲精品一区二区久久| 久久精品成人无码观看56| 七月婷婷精品视频在线观看| 亚洲婷婷熟妇熟女在线| 国产肥熟女老太老妇A片| 一区二区不卡国产精品| 草骚逼美穴骚逼美穴骚逼美穴骚逼| 伊人久久大香线蕉亚洲av| 中国一级毛片免费看视频| 91成人亚洲天堂高清| 大鸡巴暴草美女的小骚逼| 想看操真人老女人逼的视频| 韩国成人台湾天堂在线| 91综合在线国产精品| 最近日韩精品视频在线| 国产午夜精品一区二区三区视频 | 91在线免费在线观看| 日韩情色电影中文字幕| 强d乱码中文字幕熟女免费| 四虎国产永久免费视频| 久久精品国产亚洲AV麻豆蜜芽 | 国产av丝袜美腿视频一区| 在线观国产精品日韩av| 国产精品午夜久久久久久久密桃| 韩国矫正暴力一级操逼网| 亚洲日本一线产区二线区| 亚洲卡通动漫精品中文在线观看| 亚洲欧洲av午夜精品| 国产肥熟女老太老妇A片| 操白虎护士小骚逼的视频| 国产精品欧美国产精品| 免费观看又色又爽又黄的| 97精品人妻一区二区三区视频| 成年女人喷潮毛片免费播放| 亚洲AV成人片色在线观看高潮 | 无情的大屌操骚穴的视频| 韩国矫正暴力一级操逼网| 欧美A极v片亚洲A极v片| 日韩欧美人妻之中文字幕| av午夜精品一区二区三区 | 国产一区二区四区在线观看视频 | 国产精品有码av在线| 天天操亚洲精品日韩欧美| 欧美精品aaaa久久久| 日韩欧美在线观看黄色| 日韩 有码 中文字幕 在线| 亚洲嫩模三级片中文字幕| 久久久综合久久久鬼88| 国产精品亚洲综合图区| 日日摸夜夜添夜夜添日韩| 欧洲免费无线码在线观看土| 亚洲最新尤物在线视频| 视频一区中文字幕在线观看| 精品一区二区三区久久| 香蕉久久精品日日躁夜夜躁| 日韩免费成人在线视频| 中文字幕人妻高清乱码| 国产精品色多多在线观看| 欧美无遮挡在线国产不卡| 亚洲精品偷拍自综合网| 综合亚洲欧美一区二区三区| 成年免费A级毛片天天看| 久久久无码精品亚洲日韩18禁 | 少妇又白又紧又爽免费视频| 最新推荐久久伊人久久久| 美日韩一级片欧美一级片| 国产av自拍日韩高av| 欧美一级久久精品费色a| 国产精品v日本精品v欧美精品| 国产欧美精品一区二区性色| 国产综合亚洲欧美日韩在线| 亲少妇摸少妇和少妇啪啪| 美国女人大兵的大鸡巴操男人的逼| 午夜天堂精品一区二区| 天天干天天操天天射嘴里| 免费国产高清在线观看最新| 高清一区二区中文字幕| 欧美黄色成人在线电影| 欧洲老太太肛交内射视频| 日韩中文字幕在线视频免费观看| 欧美亚洲区一区二区三区| 黄色顶级男和女性视频毛视频| 日本不卡在线视频二区三区 | 国产精品久久久久久码| 亚洲五月婷婷中文字幕| 日本熟妇内射一区二区| 18出禁止看的色视频| 色婷婷综合五月在线观看| 麻豆回家视频区一区二| 国产蜜臀大码av影院| 超碰插你激情免费在线| av精彩天堂在线观看| 综合激情五月三开心五月| 国产传媒小视频在线观看| 大鸡巴操女生视频男上女下式黑人 | 欧美日高清视频在线观看| 野花视频在线观看免费高清版 | 午夜激情毛片在线观看| 99精品视频看国产啪视频新| 国产精品免费网站免费看| 亚洲熟女国产午夜精品| 亚洲av无码乱码国产精000| 色久悠悠在线观看视频| 国产精品一区二区亚洲推荐| 精品亚洲一区二区三区91| 中文字幕有码视频推荐 | 国产学生粉嫩在线观看在| 日韩毛片资源在线观看| 国产最新视频一区二区三区| 在线观看日韩一区二区视频| 婷婷亚洲综合五月天麻豆| 白白色手机免费在线视频| 欧美91精品国产自产在线| 久久免费偷拍视频看看| 国产视频一区二区三区免费看| 91精品国自产拍老熟女露脸| 午夜av成人在线观看| 国产性色av一区二区| 情色中文字幕在线观看| 日本人妻免费在线观看| 成人精品一区二区三区不卡| 美女裸身被操视频免费观看| 日韩情色电影中文字幕| 色久悠悠在线观看视频| 最新av国产在线播放| 青草精品视频在线播放| 亚洲日本精品熟女视频| 久久综合97丁香色香蕉| 黑丝视频在线播放91| 污污污视频在线观看免费视频| 国产亚洲综合一区二区| 亚洲欧美在线视频第一区第二区| 饥渴少妇高潮露脸嗷嗷叫 | 伊人天堂午夜精品草草网| 男人大鸡巴插进美女逼里视频强奸| 久热热久这里只有精品国产| 久久人人做人人妻人人玩| 人妻精品久久一区二区| 天天摸天天做天天爽婷婷| 91嫩草国产在线无码观看| 亚洲欧美国产专区在线观看| 国产在线小视频免费观看| 久久午夜无码鲁丝片午夜精品| 超碰人人爽爽人人爽人人| 午夜亚洲理论片在线观看| 99久久精品免费看国产免费软件| 免费黄色日韩在线观看| 亚洲av一区一区二区三| av午夜精品一区二区三区 | 扫码观看视频的二维码怎么生成| 国产片高潮抽搐喷水免费| 国产肥熟女老太老妇A片| 久久精品国产91麻豆| 日韩精品毛片在线看 | 成人国产激情自拍视频 | 黑人精品一区二区三区av| 国产麻豆剧传媒免费观看| 美女又爽又喷奶观看免费| 亚洲99精品一区二区三区| 成人欧美一区二区三区1314| 久久久国产综合av天堂| 成人福利视频免费观看| 小骚货被打桩啊啊骚叫视频网页| 另类艳情双性人妖视频网站| 中文字幕一区二区人妻秘书| 日本不卡二区在线观看| 少妇高潮喷水久久久久久久久久| 18禁止免费网站免费观看| 久久亚洲精品专区蓝色区| 92午夜福利在线视频| 久久a天堂av福利免费播放| 精品人妻一区二区三区mp4| 久久综合中文字幕一区二区| 啊啊啊好舒服不要再插了要高潮了 | 饥渴少妇高潮露脸嗷嗷叫| 国产性色av一区二区| 99热精品在线观看首页| 国产免费av片在线观看| 国产在线播放精品一区| 无码a级毛片免費视频内谢| 国产大陆日韩一区二区三区| 亚州欧美大鸡巴操肥逼逼| 国产高清视频一区二区| 色噜噜狠狠狠综合曰曰曰| 九九热最新免费在线观看| 一卡二卡精品在线免费| 大学生高潮无套内谢免费视频| 高清一区二区中文字幕| 91久久国产精品91久久性色| 探花农村老头操老妇说话对白| 欧美日韩精品成人影院| 精品人妻一区二区三区mp4| 自拍偷拍欧美日韩高清不卡| 亚洲色图偷拍一区二区| 国产亚洲综合一区二区| 美日韩一级片欧美一级片| 亚洲热女乱色一区二区三区| 国产无遮挡又黄又爽又大| 操逼肥的一线天白虎女人| 欧美91精品一区二区三区| 在线观看亚洲欧洲精品| 成人性生活视频在线观看| 在线观看免费完整版日本| 午夜亚洲理论片在线观看| 男女男精品视频免费体验| 亚洲一区二区三区中文| 啊啊啊小穴好痒逼逼视频| 国产人妻久久精品二区三| 黑人巨大精品欧美完整版| 青青草青娱乐免费在线视频| 中文字幕一区二区三区乱码人妻| 午夜福利观看在线观看| 男人插女人鸡在线污视频观看| 中文字幕中文字幕乱码| 美味人妻手机在线观看| 欧美一区二区三区最新| 正在播放干肥熟老妇视频| 搡女人真人视频不用下载| 女人的天堂av网免费| 污污污视频在线观看免费视频 | 久久综合九色综合本道| 欧美日韩亚洲重口另类| 亚洲狠狠丁香综合一区| 日韩精品一区二区三区视频网| 操逼肥的一线天白虎女人| 日本到在线高清视频观看| 中文字幕亚洲欧美日韩在线不卡| 香蕉久久精品日日躁夜夜躁| 美女被草视频免费网站| 好吊妞人成视频在线观看| 日韩精品毛片在线看| 国产非洲一区二区三区久久久久久| 日韩欧美一级特黄大片| 91中文字幕国产精品| 在线免费看片国产精品| 撕开奶罩揉吮奶头大尺度视频| 色综合久久88色综合久久天| 色婷婷婷丁香亚洲综合| 国产在线小视频免费观看| 无遮挡18禁啪啪羞羞漫画| 亚洲男人天堂在线免费| 高清女厕偷拍一区二区三区| 日韩亚洲一区二区三区中文字幕| 亚洲国产精品毛片av在线下载| 国内精品久久人妻白浆| 社保交够15年可以辞职等退休吗 | 男生使劲操女生下面视频国产| 黄色av网站一区二区三区| 99爱在线精品视频免费观看9| 欧美日韩另类精品激情| 自拍偷在线精品自拍偷蜜臀| 粉嫩女大学生自慰喷水白虎小穴| 在线视频自拍日韩精品一区| 货在沙发风骚至极 自摸肥逼勾引 又黄又爽有无遮挡的网站 | 中国国语毛片免费观看视频| 一区二区不卡国产精品 | 国产一区二区三区三洲| 能看美女逼的网页免费看| 日本高清视频不卡一区二区| 国产一级二级三级内谢| 学生妹被爽到高潮受不了视频| 国产成人精品日本亚洲777| 高颜值午夜福利在线观看| 亚洲国产欧洲综合997| 国产免费内射又粗又爽密桃视频 | 啊我要吃大鸡巴 插到骚逼里好大| 俄罗斯美女扒开B口B毛男人玩吗| 看中文字幕一区二区三区| 成人经典视频免费在线| 男女男精品视频免费体验| 久久这里只要精品视频| 伊人天堂午夜精品草草网| 麻豆成人久久精品二区三区红| 国产主播精品一区二区三区| 久久精品国产在热亚洲| 亚洲国产成人精品一区91| 中文字幕婷婷丁香色五月| 超碰插你激情免费在线| 香港三级日本三级五月婷| 中文字幕黄色片在线观看| 国产精品污双胞胎在线观看| 丝袜美腿福利一区二区| 男生把坤坤戳进女生阴道里的视频| 最近中文字幕国产精品| 亚洲婷婷熟妇熟女在线| 想高潮插逼逼免费观看视频| 一级国产片在线观看免费| 国产日本草莓久久久久久| 人妻精品久久一区二区| 国产非洲一区二区三区久久久久久| 亚洲成人av免费在线看| 国产97在线精品一区| 久久999精品米奇久久久| 亚洲欧美国产专区在线观看| 久久久无码精品亚洲日韩18禁| 亚洲精品美女在线观看播放| 亚洲av情网站在线观看| 日本不卡二区在线观看| 99久久精品免费看国产免费软件| 五月天丁香花婷婷狠狠热| 亚洲天堂一区二区免费不卡| 国产精品午夜免费福利| 欧洲中文字幕日韩精品成人| 美女脱光衣服露出奶头和尿头吊嗨| 两根肉棒操的好爽的视频| 中文人妻av一区二区三区| 国产精品午夜免费福利| 麻豆精品人妻一区二区三区99 | 国产熟女一区二区三区四区| 操逼操逼操逼操逼操逼操逼!!!| 久久99这里只有免费费精品| 国产精品色多多在线观看| 日本黄色一区二区三区| 欧美成人三区四区在线观看| 国产福利一区二区三区| 国产片高潮抽搐喷水免费| 国产精品视频每日更新国产清纯| 色综合色综合色综合天天上班| 亚洲成人av免费在线看| 大陆猛男大鸡巴操骚美女骚逼视频 | 亚洲熟女乱一区二区精品成人| 日韩成人福利在线视频| 久久国产综合尤物免费观看| 国产午夜精品一区二区三区视频 | 日韩精品无乱一区二区| 国产欧美日韩综合精品二区| 99视频在线观看免费的| 国产又色又爽又黄的视频多人| 国产男女高清视频在线| 18禁看一区二区三区| 四虎亚洲中文在线观看| 亚洲av一区一区二区三| 亚洲精品国产欧美成人| 动态强干叉美女小穴视频| 中文字幕人妻熟女人妻av| 日本在线不卡v2区| 日韩精品少妇专区人妻系列| 国产大陆日韩一区二区三区| 自拍偷自拍亚洲一区二区| 男生把坤坤戳进女生阴道里的视频| 欧美日高清视频在线观看| 日韩女优日逼视频粉嫩开包 | 亚洲欧美国产日韩专区| 国产精品自在在线午夜精华在线| 久久久午夜福利免费视频 | 91性高久久久久久久久久久| 91出品视频在线观看| 粉嫩女大学生自慰喷水白虎小穴| 日本人妻免费在线观看| 男生操女生小逼爽爽爽看看| 久久免费偷拍视频看看| 美女国产黄色三级片在线播放| 野花视频在线观看免费高清版| 91精品国产福利在线观看性色| 大鸡巴暴草美女的小骚逼| 日逼大阴户听书性爱刺激| 久久久久精品午夜理论片| 白白色视频免费在线观看| 亚洲av二三四五又爽又色又色| 国产无遮挡又黄又爽又大| 久热这里只有精品视频4| 久久人人做人人妻人人玩| 国产va免费精品观看精品视频 | 男人抚摸亚洲女大学生的大胸| 波多野结衣AV在线无码播放| 在线观看免费完整版日本| 激情五月亚洲婷婷综合五月天 | 国产一卡二卡精品乱码| 最近日韩精品视频在线| 久久精品av免费观看| 在线观看永久免费黄色| 国产女人av一级一区二区三区| 99国产精品亚洲一区二区三区| 国产欧美日韩综合精品二区| 深夜视频在线观看你懂的| 精品久久只有精品做人人| 嗯啊好爽用力啊视频在线观看| 日韩爱爱视频在线观看| 自拍偷自拍亚洲一区二区| 国产精品高清无遮挡网站| 免费国产国语一级特黄aa大片| 免费 无码 国产在线观| 成人日韩精品在线观看| 中文字幕在线av电影| 蜜桃免费视频在这里看| 人与禽交免费视频在线观看| 深夜福利av在线播放| 中国一级做a爰片久久毛片| 亚洲精品中文有码字幕| 老司机永久在线免费看视频| 2020国内精品自在自线| 香港三级日本三级五月婷 | 精品国产高清中文字幕| 饥渴少妇高潮露脸嗷嗷叫 | 久青草视频在线免费观看| 久久精品亚洲国产日韩| 国产精品高颜值18禁| 国产精品无码免费一级毛住a| 亚洲精品免费观看91| 色综合久久久久久久激情| 干黑丝袜美女的小骚穴影片| 无遮挡18禁啪啪羞羞漫画| 蜜臀av国内精品久久久久久久久| 操逼肥的一线天白虎女人| 四虎永久在线精品视频观看| 香港三级日本三级五月婷| 国产日韩欧美亚洲另类| 自拍偷在线精品自拍偷蜜臀| 日韩av中有文字幕在线观看| 日本在线不卡v2区| 亚洲伊人情人综合网站| 中国亚洲女人69内射少妇 | 成人一区二区三区在线观看| 亚洲国产欧美日韩各类| 美国妓女与亚洲男人交配视频| 日韩亚洲在线观看视频| 亚洲国产精品成av人| 草骚逼美穴骚逼美穴骚逼美穴骚逼 | 999国产精品永久免费视频| 国内揄拍国内精品久久| 日韩av中有文字幕在线观看| 深夜福利一区二区三区欧美| 精品人妻伦九区久久69| 国产亚洲精品久久久久久无| 日本在线不卡v2区| 亚洲精品乱码在线播放| 黄色av网站一区二区三区| 精品一区二区三区久久| 在线观国产精品日韩av| 两个人免费观看日本的完整版| 国产精品熟女自拍视频| 国产精品人成在线播放| 国产精品视频每日更新国产清纯| 亚洲AV元码天堂一区二区三区 | av精彩天堂在线观看| 国产精品为爱搞点激情| 社保交够15年可以辞职等退休吗| 欧美激情网页一区三区| 超碰插你激情免费在线| 国产日韩一区二区不卡视频| 久久综合97丁香色香蕉| 男生把坤坤戳进女生阴道里的视频 | 看操小日本女人乱伦逼视频| 国产精品久久久久久精三级| av黄色在线观看一区二区三区| 在线视频自拍日韩精品一区| 亚洲综合国产伊人五月婷| 国内精品国产成人国产三级| 国产主播在线一区二区| 97精品久久九九中文字幕| 大鸡吧插没毛的骚逼诱惑视频| 大鸡巴暴草美女的小骚逼| 亚洲一区二区三区网址| 在线精品国产亚洲av日韩| 成人免费淫片在线观看免费 | 久久人人做人人妻人人玩| 啊我要吃大鸡巴 插到骚逼里好大| 性生活AV在线直播成人社区| 亚洲一级毛片免费在线观看| 女人下面视频骚粉骚逼操| 国产中文字幕日韩精品| 丰满人妻av一区二区| 激情五月天亚洲日婷婷| 精品国产一区二区三区卡 | 大鸡巴操女生视频男上女下式黑人 | 久久这里只有偷拍精品视频| 色哟哟一区二区三区四区视频| 色欲av一区二区三区精品| 在线日韩人妻高清在线| 美女脱光衣服露出奶头和尿头吊嗨| 日产乱码一二三区别免费| 久久精品国产欧美电影| 一本色道久久亚洲av红楼| 男人的天堂av免费社区| 国产美女极度色诱视频| 日韩成人a片一区二区三区| 国产精品美女性感视频一区二区 | 国产精品国产三级国产普| 曰本精品人妻久久久久久| 国产精品午夜福利在线观看| 哺乳一区二区久久久免费| 中国亚洲女人69内射少妇| 国产免费成人在线观看视频| 日韩欧美亚洲国产精品幕久久久 | 东北少妇自拍高潮喷水| 亚洲中文字幕无码永久免弗首页 | 亚洲日韩精品欧美一区二区三区| 午夜宅男在线视频观看| 亚洲精品一区二区毛豆| 97精品国产自产在线观看永久| 痴女av一区二区三区| 丁香婷婷激情综合俺也去| 久久精品亚洲国产日韩| 久久精品成人无码观看56| 国产在线观看黄av免费| 丁香花在线视频观看免费| 免费无码va一区二区三| 亚洲国产免费一区二区| 日本老师做三 片乱码视频| 加勒比东京热综合区一区二| 国产人成91精品免费观看| 日本是全亚洲最发达的国家| 艳妇臀荡乳欲伦69调教视频| 成人精品一区二区三区不卡 | 成人午夜福利视频网址| 韩国矫正暴力一级操逼网| 伊人久久大香线蕉亚洲日本强| 国产综合永久精品日韩| 色一情一乱一区二区三区码| 亚洲熟女av一区二区三区| 久久午夜av一区二区| 男人天堂一区二区av| 日本五十路熟女啪啪啪| 成人久久av一区二区| 国产日韩人av在线播放| 要肉棒插死骚货黄色视频| 免费国产国语一级特黄aa大片| 夫目中文字幕一区二区| 久久久久伊人亚洲最大av综合| 久久久午夜福利免费视频| 国产精品高清在线播放| 女生的小鸡鸡啊啊少妇初三| 欧美黄色成人在线电影| 亚洲AV无码专区片在线观看| 激情国产AV麻豆凡V换脸| 美女裸身被操视频免费观看| 小伙子狂暴大奶子美女逼 | 五月天丁香婷婷狠狠狠| 日本一区二区三区精品视频在线 | 亲少妇摸少妇和少妇啪啪| 中文字幕一区二区三区乱码人妻| 天堂av一二三区在线播放| 中国国语毛片免费观看视频| 好好热精品视频在线观看| 91中文字幕在线永久| 精品一区二区日本视频| 极品美女高潮精品16p| 一级a做片免费观看久久| 日本人体精品一区二区三区视频| 国产精品久久av麻豆| 性夜国产夜春夜夜爽三级| 欧美人妻精品一区二区三区99| 欧美激情日韩精品久久久| 操白虎护士小骚逼的视频| 国产男女猛进猛出粗暴啊| 可以免费看的欧美黄片| 99re7在线观看国产精品| 国产精品亚洲综合图区| 热99RE久久精品这里都是精品| 99国产精品亚洲一区二区三区| 又色又爽又黄的视频大全| 我要大鸡吧在线观看免费 | AV色欲无码人妻中文字幕| 中国国语毛片免费观看视频| 99久久婷婷国产综合精品免费 | 国产97在线精品一区| 边吃奶边摸下我好爽免费视频|