操逼啊口爆啊rrr中途啊免费-中文字幕av网一区二区-中文字幕久久精品波多野结百度-国产三级视频在线观看

雙極性晶體管

二極管

ESD保護(hù)、TVS、濾波和信號調(diào)節(jié)ESD保護(hù)

MOSFET

氮化鎵場效應(yīng)晶體管(GaN FET)

絕緣柵雙極晶體管(IGBTs)

模擬和邏輯IC

汽車應(yīng)用認(rèn)證產(chǎn)品(AEC-Q100/Q101)

IAN50004 - Using power MOSFETs in DC motor control applications

This interactive application note aims to give some general insights into how to drive a DC motor using Nexperia Power MOSFET devices.

Authors: Andrei Velcescu and Christian Radici; Application Engineers, Manchester

This interactive application note contains embedded Cloud based simulations to augment the text.

To open the embedded simulation, simply hover over the simulation image. Left click anywhere in the graphic area once the central play button changes in colour. This opens the schematic in the Cloud environment. See the interactive application note tutorial page for more details on how to use the simulations. See accompanying application note: AN50004.

Download AN50004

1. Introduction

Within the automotive environment, Brushed Direct Current (DC) motors play an important role in the control of many applications within the car such as mirror folding control, window lifter, seat control, sunroof and power tailgate control, as well as oil, fuel and water pumps.

Figure 1. DC motor automotive applications

This interactive application note includes simulations of DC motor control and details the modeling of the motor used in the simulations.

2. Relay replacement in a power-folding mirror assembly

In modern automotive applications, an average of about 30 relays are used in a car. Driving a relay is simple, and the internal resistance of the connection can be very low. However, compared with relays, MOSFETs have obvious advantages in noise, service life, miniaturization and reliability. Therefore more and more manufacturers consider using MOSFETs to replace relays.

Figure 2. Relays replaced with MOSFETs

Fig. 2 a) is a motor scheme that mainly uses relays for motor drive. The direction of the motor rotation is selected by the contact of the relay. However, the relay cannot control the current of the motor, so it still needs to be connected to a MOSFET to control the current, so as to meet the functional requirements of anti-pinch.

Fig. 2 b) is a scheme that directly uses MOSFETs to drive the motor. The direction of motor rotation can be controlled using only one MOSFET, while the other MOSFET can be switched by PWM to control the motor current.

A Nexperia demo application which showcases how MOSFETs may replace relays may be seen in Fig. 3. These were used in controlling the mirror power-folding mechanism using 12 V or 24 V H- bridge DC motor control. As can be seen, the relays were replaced with MOSFETs in the LFPAK33, LFPAK56D and LFPAK56 small SMD packages.

Figure 3. Relay replacement demo board

By using any of the power MOSFET variants, there will a space reduction of up to 1:100 in terms of volume, 1:10 in terms of board area and 1:20 in terms of weight. This is depicted by the orange highlighted area in Fig. 3 versus the yellow highlighted area. In terms of performance, the LFPAK MOSFETs will offer high current handling for locked rotor protection, high reliability and full Automotive Qualification AEC-Q101. Lastly, the copper clip within the LFPAK MOSFETs offers a good thermal performance.

 Motor armature equivalent circuit
Figure 4. Motor armature equivalent circuit

3. Brushed Direct Current motor modelling

The DC motor is a common actuator in the automotive environment and in order to understand how to better choose the MOSFETs controlling it and their ratings as well as obtain the wanted behaviour from the motor, it was modelled as shown in Fig. 4. Moreover, as it will be seen later, the motor characterisation was conducted in order to have a representative example.

Click below to enter the simulation.

Simulation 1.

In simulation 1, a DC motor is connected to a DC voltage source of 5 V. This shows that the rotational speed of this particular motor is 103.2 rad/s. Considering the inner structure of the DC motor one can consider its armature circuit, (as can be seen in Fig.4). This contains its electric resistance (Ra), inductance (La) as well as back EMF (e). Moreover, the rotor mechanical constants are also shown as: motor torque (T), rotor angle (θ) and rotor inertia (J). Taking these into consideration and applying some circuit analysis techniques such as Kirchhoff’s voltage law, gives Eq. 1 below:

(Eq 1) 

In this case is the input voltage to the DC motor and the one supplied by the H-bridge which is formed by 4 MOSFETs within 2 half-bridges in order to obtain bi-directional control.

Considering the magnetic field as constant, the torque produced by the DC motor will thus be proportional to the armature current and the motor torque constant KT. This may be seen in Eq. 2 below:

(Eq 2) 

 

Moreover, the back EMF is proportional to the rotor velocity /dt and the back EMF constant K , as shown in Eq. 3 below:

(Eq 3) 

As it is considered that the torque and back EMF constants are equal, the following equality may be given: KT = Ke = K.

Based on the above equations the motor output torque and speed may be approximated by knowing the motor constants. This may be found using the motor data sheet or by measurement. More information about how some of the constants were determined for an example DC motor will be given later.

4. H-bridge theory

The H-bridge, also known as full-bridge, is an electronic system consisting of four switches and capable of creating a bidirectional current and reversible voltage across its load. This function comes in handy when driving a motor because it allows to change the direction of its rotation and, if the application allows it, even to use it as a generator. This circuit is used in many systems such as in inverters (DC/AC), regulators (DC/DC) and class-D amplifiers.

The H-bridge can be thought of as composed of two half-bridges used simultaneously. The half-bridge is capable of bi-directional current but not reversible voltage and therefore, it is mainly used in motor drive applications with single direction motors such as oil pump motors and small fans.

4.1. Modes of switching

The easiest and most popular way to drive a DC motor using a H-bridge is by using pulse width modulation (PWM). Here the MOSFETs are switched at a constant frequency with a control signal having variable duty cycle. This allows the average voltage across the motor to vary and thus control the rotor angular velocity. The MOSFETs in a H-bridge can be switched in different sequences to provide the desired voltage polarity. There are two common modes: bipolar and unipolar.

Figure 5. Bipolar drive H-bridge switching

The bipolar drive allows two MOSFETs to be switched ON at a time. For example for positive current (from node A to node B) both Q2 and Q3 are turned ON. Whereas, for negative current, Q1 and Q4 are turned ON. The direction of the current is chosen by activating one or the other couple of FETs while applying a voltage across the motor that varies between VDC and -VDC, with an average value that depends on the duty cycle (δ), see Fig. 5.

A time delay, known as dead-time, must be set between the turning OFF of one pair and the turning ON of the other pair, in order to avoid cross-conduction (or shoot through), that is shorting the supply.

Due to the magnetic field build up in the motor, during the delay phase some current will continue to flow, even though all the devices are turned OFF, by recirculating through the MOSFETs body diodes.

Figure 6. Unipolar drive H-bridge switching

The unipolar drive scheme, instead, allows for the current to be regulated by keeping ON one right side MOSFET (Q2 or Q4) while switching only one left side MOSFET(Q3 or Q1). In its simplest form it allows for the elimination of the dead time which reduces the complexity of the driver circuit. For the same reason described in the bipolar drive some current will be forced to flow through one of the MOSFETs body diode when the switching MOSFET is turned OFF, see Fig. 6.

If we assume Q3 switching and Q2 turned ON, then when the former is switched OFF the current will flow through Q1 body diode. In order to decrease the loss caused by the diode voltage drop, Q1 can be switched ON while Q3 is OFF. In this case a proper dead-time constraint must be respected.

One of the major difference with the bipolar drive scheme is the fact that the voltage across the motor will have an amplitude of only VDC. As a consequence the peak of the ripple current through the motor ends up being half of the one found for the bipolar case, thus leading for lower losses in the motor itself

5. Circuit simulation

Based on the technical note TN90002 and on the hardware seen in Fig. 7simulation 2 was created. This focuses on the H-bridge part containing 4 Nexperia LFPAK56 MOSFETs, the BUK7Y7R8-80E.

Figure 7. Experimental setup with motor and control board

Figure 8. Schematic of motor drive circuit simulation

The simulated circuit may be seen in Fig 8. This focused on the behaviour of the MOSFETs and thus the logic circuit was approximated using a Digital Pulse Source, a Digital Inverter, AND gates, Buffers and Digital to Voltage blocks. Additionally the PWM generators were set to one of the frequency options used in the TN90002, 15.6 kHz. Similarly, 10 Ω gate resistors were used.

6. Logic and MOSFET gate signals

Investigating the schematic shown in Fig. 8 from left to right, one may see the Digital Pulse Source. This is used as an input which dictates the direction in which the motor rotates and the time for which this happens. This input signal, seen as the green trace in simulation 2 replaces a person’s interaction when using the buttons, as in TN90002. The logic signal is set to 1 for 150 ms. In this manner the motor is rotating clockwise. Due to this, Q2 is fully switched ON for this duration and Q3 is switched ON and OFF using the PWM generator. Moreover, Q1 was pulsed with the inverted PWM signal delivered to Q3 in order to reduce the voltage drop on the diode of Q1. In this manner the top MOSFET, Q1, is freewheeling the motor current. If this was not the case and Q1 was OFF the losses would be higher. The control signals for Q1 and Q3 may be seen in simulation 2 as the blue and red traces whereas the ones for Q2 and Q4 may be seen as the light blue and purple traces.

Click below to enter the simulation.

Simulation 2.

As mentioned, due to Q3 switching, a dead time was also required. Considering the signals of Q1 and Q3 as well as for Q2 and Q4 from simulation 2 the used dead time was 2 µs, whereas the one set within the TN90002 was 2.5 µs. This was implemented using the Buffer blocks seen in Fig. 8. Moreover, the 15.6 kHz PWM signal was set to a duty cycle of 12.5%.

Once the logic driving signal reached the Digital to Voltage Converter, a 10 V signal was generated in order to switch ON and OFF the four BUK7Y7R8-40E MOSFETs of the H-bridge.

Click below to enter the simulation.

Simulation 3.

In simulation 3 above, the gate voltages of the respective MOSFETs of the H-bridge may be seen. The MOSFETs forming the left half-bridge, Q1 and Q3 have been switched using PWM whilst Q2 and Q4 have been turned ON or OFF fully for the respective durations. Notice the plots of VGS_Q1 and VGS_Q3 , one can again see the dead time implementation.

Simulation 4 below shows the drain-to-source voltages of the MOSFETs within the left half-bridge may be seen, as well as their respective drain currents. These have been shown for a time window of approximately 100 µs in order to focus the attention to the switching behaviour. Moreover, by multiplying the drain-to-source voltage of Q3 by its drain current, seen in simulation 4 the instantaneous power dissipation was obtained. This data can be averaged and used for the derivation of the FETs thermal behaviour, via a suitable RC network (Foster or Cauer). In order to find the average or rms power one can consult the Wave Viewer and Math operations sections within the tutorial page.

Click below to enter the simulation.

Simulation 4.

7. Motor characterisation and constants

In order to simulate the behaviour of the H-bridge controller demo previously explained the motor characteristics had to be extracted so that for a specified PWM duty cycle the rotor speed in the simulation would match the one of the real application.

The rotor dimensions were measured and by approximating its shape to a cylinder its moment of inertia was found using Eq. 4 where m = rotor mass and r = rotor radius:

(Eq 4)  

For this particular motor the rotor was measured to weigh 220 g and to have a radius of approximately 17 mm, thus yielding an approximately 3.15x10-5 kg·m2 moment of inertia. Additionally the plastic disc was found to have a moment of inertia of approximately 3.5x10-6 kg·m2. By adding the two, the total inertia was found to be 3.5x10-5 kg·m2.

Using a DMM, the winding resistance was measured to be approximately 1.5 Ω. This was also found by conducting a motor stall test and from the step response of the DC motor seen in Fig 9.

(Eq 5) 

Figure 9. DC motor step response

Additionally the electrical time constant of the motor ??, is found using Eq 6. At 63.2% of its steady state value the current in Fig. 9 reaches approximately 1.5 A (Eq 7, Eq 8) This happens at approximately 0.39 ms. Using ?? and the value obtained for the motor winding resistance the winding inductance was found to be approximately 600 µH.

(Eq 6)  

(Eq 7)  

(Eq 8)  

By conducting several measurements the motor’s rotational speeds were found at different voltages as well as the currents and voltages. From these, the motor’s KV and Ke values were inferred and thus the KT value was found to be approximately 0.045 Nm/A.

For the DC motor the following are considered as motor constants (Eq 9):

(Eq 9) 

Lastly, another important parameter was the viscous drag which was found to be approximately 0.0001 Nm/(rad/s). At this stage the motor was characterised and thus expected to behave as the real one presented in the technical note TN90002.

When tested, the real system was found to achieve a rotational speed of approximately 6 RPS or 360 RPM which translated to approximately 37.7 rad/s. The board supply voltage used was 20 V, the PWM frequency, 15.6 kHz and a duty cycle of 12.5%.

Simulation 5.

In the above simulation the motor steady state velocity may be seen. The rotational  speed was found to be approximately 40 rad/s which is similar to the 37.7 rad/s seen in the real  application from Fig. 7. Additionally the motor current and torque for the full simulation period of 150 ms could also be seen and further investigated in the simulation window. In simulation 5 one may see the motor voltage and current for a few PWM periods. These results are  similar to the oscilloscope results of the real system in Fig. 10.

Figure 10. Oscilloscope screen shot of motor voltage and current

8. MOSFETs recommendations by application

Some MOSFET recommendations are given below for applications using half-bridge and H-bridge configurations for motor control. The aimed applications are: mirror folding control, window lifter for anti-pinch function, seat control, sunroof and power tailgate control as well as fuel, water and air pumps.

8.1. Power folding mirror

Some MOSFETs that are recommended for this 12 V or 24 V H-bridge application are summarised in Table 1.

8.2. Window lifter for anti-pinch function

For this application the MOSFETs and system may be required to have low on-state losses, overcurrent protection, low thermal resistance and low thermal impedance as well as the need to be integrated into a relative small board area. The control uses PWM with frequencies ranging from 10 to 20 kHz. Motor currents of around 2 A to 5 A are expected for normal operation and operation around 10 A for shorter periods of time. In locked rotor cases, the current demand is much higher and may reach 30 A for periods ranging from 200 ms to 1 second.

Figure 11. MOSFETs in seat motor control application

8.3. Window lifter for anti-pinch function

For this application the MOSFETs and system may be required to have low on-state losses, overcurrent protection, low thermal resistance and low thermal impedance as well as the need to be integrated into a relative small board area. The control uses PWM with frequencies ranging from 10 to 20 kHz. Motor currents of around 2 A to 5 A are expected for normal operation and operation around 10 A for shorter periods of time. In locked rotor cases, the current demand is much higher and may reach 30 A for periods ranging from 200 ms to 1 second.

8.4. Seat control

In the seat control application two motors are sometimes required, one for the forward and backwards seat adjustment and another for the backrest support adjustment. A schematic of the two H-bridges may be seen in Fig. 11.

More complex circuits may be encountered in high end car models where several other motors are required in order to control things such as height, the left and right chair sides and the head rest position.

8.5. Sunroof and power tailgate control

There are a few motors in sunroof and power tailgate applications. The motors can control the sunroof forward/backward and up/down, therefore the driving stage is required to allow bidirectionality. Both brushed and brushless DC motors can be used in this application, the former driven by a H-bridge (Fig. 12) and the latter using a multiphase half-bridge (Fig. 13). The maximum current needed for this kind of application may be around 10 A for the more power hungry ones.

Figure 12. H-bridge MOSFETs in sunroof motor control Figure 13. 3-phase MOSFETs in sunroof motor control

 

Figure 14. MOSFETs in pump motor control applications

8.6. Fuel, water and air pumps

There are a number of pumps used in automotive applications, such as fuel, water and air pumps. Both brushed and brushless DC motors can be suitable for this application. For the former a simple half-bridge structure can be used (Fig. 14). In some small current load applications, the recirculating FET can be replaced by a Schottky diode. For brushless motor a more comple structure of 3-phase bridge is required Fig. 13. In this case the difference in complexity and number of components can be quite stunning.

Since different motor applications have different power levels, from a small 30 W pump to a 300 W intake fan, the demand for power MOSFETs varies. Due to the many advantages of brushless motors more and more small water pump motors have now adopted the brushless scheme. Here, due to the large number of MOSFETs, we recommend the use of smaller packages such as the LFPAK33 and the LFPAK56D (dual devices) MOSFETs for motor drive. The 40 V device is suitable for the application of most 12 V motors. The specific model selection calls for the appropriate packaging and internal resistance, according to the load power of the motor and the overall cooling requirements of the module. Standard level VGS threshold is suggested.

Applications

System recommendations

MOSFET characteristics

MOSFET recommendations

Power folding mirror  
  • Low on-state losses

     

  • Over-current protection

     

  • Small footprint
 
  • RDSon

     

  • ID,IDM

     

  • LFPAK56, LFPAK56D, LFPAK33
 BUK7Y3R5-40E
 BUK7K6R2-40E
 BUK9M14-60E
Window lifter for anti-pinch  BUK7Y4R4-40E
 BUK7K6R8-40E
 BUK7M6R0-40H
Seat control  BUK7Y3R5-40E
 BUK7M6R0-40H
 BUK7K6R2-40E
Sunroof and power tailgate control  BUK7Y3R5-40E
 BUK7Y4R4-40E
 BUK7K6R2-40E
 BUK7M6R0-40H

Table 1. Recommended MOSFETs for automotive motor control applications

9. Summary

The main applications of DC motors and MOSFET recommendations have been discussed.

Nexperia offers many suitable options for the most popular applications. DC motor modelling and characterization has been presented, which can be used to better predict the performance of the driving circuitry and the selection of the necessary components. Theoretical and practical notions of H-bridge have been outlined, in particular methods of implementing PWM, motor ripple current, MOSFET dissipation and switching frequency selection.

Finally an example from the technical note TN90002 has been presented. Its main features and operational concept have been summarized and further aspects clarified in more details. Interactive simulations of this system have been embedded into this application note to assist in understanding the driver and power stage operation.

PartQuest embedded Cloud simulations were used in this interactive application note.

Page last updated 28 September 2021.
美女被大鸡巴插男内射欧美| 国产成人无码区免费AV片蜜臀| 社保交够15年可以辞职等退休吗| 伊人久久大香线蕉亚洲日本强| 亚洲欧美国产日韩专区| 丰满熟女少妇一区二区三区| 人妻少妇精品视频区二| 中国一级全黄的免费观看 | 欧美逼逼一区二区三区| 丰满人妻连续中出中文字幕在线 | 国产黄片一级二级三级| 操逼肥的一线天白虎女人| 18禁看一区二区三区| 七月婷婷精品视频在线观看| 久久洲Av无码西西人体| 久久久久久一区二区三区四区别墅| 污污污视频在线观看免费视频| 成人精品一区二区三区不卡 | 国产日本亚洲精品在线一二三四 | 日本韩国美女久久午夜| 国产视频三区二区在线观看| 亚洲日本一线产区二线区| 青青草99久久这里只有精品| 国产乱码精品一区二区三区播放| 中文人妻无码一区二区三区在线| 亚洲欧洲日?国码久在线| 污污污视频在线观看免费视频| 亚洲国产av一区二区三区| 久久99精品久久久久久手机免费| 情色中文字幕在线观看| 欧美精品久久天堂久久精品| 加勒比一道本在线观看| 99爱在线精品视频免费观看9| 视频一区视频二区同事| 国产免费人成视频尤物| 久热这里只有精品视频4| 又嫩又硬又黄又爽的视频| 国产传媒天美av一区二区三区 | 国产精品午夜久久久久久久久| 亚洲国产精品成人综合片| 国产精品亚洲综合第一区| 嗯啊好爽用力啊视频在线观看| 欧美一区二区三区裸体| 蜜臀在线观看免费视频| 亚洲大陆免费在线视频| 激情五月六月婷婷色视频| 国产亚洲一区二区三区精品久久| 强奷漂亮的夫上司犯在线观看| 国产精品中文字幕日韩精品| 日本在线有码中文视频| 九九最新视频免费观看九九视频| 日韩亚洲在线观看视频| 色哟哟在线观看中文字幕| 一起草视频网站在线播放| 淫荡女人水嫩嫩逼爆肏视频| 国产自产拍午夜免费视频| 激情春色欧美激情国产剧情| 大鸡巴插入少妇骚穴视频| 鸡鸡插进骚逼视频欧美996| 欧美视频中文字幕视频日韩视频| 日本精品福利在线视频| 国产精品成人久久综合| 国产黄色网页在线观看| 五月天丁香啪啪激情综合 | 日韩一区二区三区免费观看的人| 五月天丁香花婷婷狠狠热| 亚洲中文字幕有码视频| 国产人碰人摸人澡人视频| 欧洲的大长鸡巴操日本小浪逼 | 亚洲成人自拍在线视频| 天天躁日日躁狠狠躁日日| 国产精品毛片高清在线完整版 | 欧美日韩国产一区二区的| 久久亚洲精品成人在线| 日韩欧美三级影片在线观看| 午夜亚洲精品中文字幕| 人妻熟女一区二区aⅴ在线视频| 高清日韩中文字幕在线| 人妻内射一区二区在线视| 日本在线免费播放一区| 强奸爆操女白领嫩穴好紧| 菠萝菠萝蜜在线视频在线播放 | 色橹橹欧美在线观看视频高清免费| 亚洲人人妻人人爽av| 国产大陆日韩一区二区三区| 免费看美女私人部位的直播| 美女高潮潮喷冒白浆免费视频| 亚洲精品中文有码字幕| 91精品麻豆日日躁夜夜躁| 国产内射一级一片高清视频蘑菇| 91男厕偷拍男厕偷拍高清| 爽爽午夜福利视频一区二区| 男生操女生的逼视频海量免费| 久久999热这里的精品 | 亚洲精品美女在线观看播放| 国产精品午夜福利在线观看| 亚洲一区精品二人人爽久久| 激情五月天丁香啪啪综合| 精品自拍视频国产免费自拍视频 | 我要大鸡吧在线观看免费| 痴女av一区二区三区| 欧美日韩人妻精品一区二区在线| 重磅泄露操鸡吧美女视频| 亚洲欧美在线视频第一区第二区| 激情毛片av在线免费看| 欧美高清精品视频在线| 货在沙发风骚至极 自摸肥逼勾引 又黄又爽有无遮挡的网站 | 成人久久av一区二区| 久久精品国产亚洲av护士长| 人妻久久久一区二区三区视频 | 在线观看免费完整版日本| 亚洲精品福利视频免费| 18禁看一区二区三区| 天天操夜夜一操免费看| 国产黄片一级二级三级| 高颜值午夜福利在线观看| 最近中文字幕国产精品| 少妇又白又紧又爽免费视频| 国产诱惑站着操性感美女小穴视频| 水蜜桃美女对机机小骚逼| 欧美成人午夜福利影院| 菠萝菠萝蜜在线视频在线播放 | 日韩av天堂手机在线观看| 欧美三级视频一区二区三区| 丰满人妻连续中出中文字幕在线| 中文字幕有码人妻在线| 亚洲精品一区二区久久| 欧美成人午夜福利影院| 国产一卡二卡精品乱码| 日韩亚洲一区二区三区中文字幕| 久久久久久久久极品99| 国产免费av片在线观看| 中文无字幕一区二区三区| 女优日本中文字幕五十| 99国产精品久久久久久| 免费看美女私人部位的直播| 亚洲精品成人中文字幕| 猛男人插女人逼里面操逼| 国产aa视频一区二区三区| 欧美人妻少妇精品久久| 国产精品国产三级国产普| 国产999精品老熟女唐老鸭| 亚洲最大色大成人av| 人成网av精品自在自拍| 国产视频一区二区三区免费看| 日韩欧美一级精品久久| 两个人免费观看日本的完整版 | 男人大鸡巴插进美女逼里视频强奸| 强奸爆操女白领嫩穴好紧| 午夜亚洲理论片在线观看| 无遮挡男女一进一出视频真人| 亚洲一级特黄大片婷婷| 在线观看亚洲欧洲精品| 久久久久久一区二区三区四区别墅 | 美国女人大兵的大鸡巴操男人的逼| 搡女人真人视频不用下载 | 成人公开无码免费DVD视频| 日韩av高清不卡一区二区三区| 不卡av免费在线网址| 99热精品在线观看首页| 国产亚洲精品免费专线视频| 性生活在线免费观看小视频| 97精品人妻一区二区三区视频| 成人麻豆日韩在无码视频| 精品国产av一区二区三区蜜臀| 国产精品视频每日更新国产清纯| 男人鸡巴插进女人B里的视频| 久久精品国产亚洲夜色av| 亚洲综合色一区二区三区蜜臀| 欧美一区二区三区裸体| 情色中文字幕在线观看| 凹凸国产在线观看高清画质| 黄色国产精品视频入口| 精品国精品国产av自在久国产| 亲少妇摸少妇和少妇啪啪| 亚洲欧美日韩偷拍丝袜| 水蜜桃美女对机机小骚逼| 国产日本亚洲一区二区| 欧美精品久久久天堂一区| 亚洲精品国产成人综合免费| 在线视频自拍日韩精品一区| 黄色顶级男和女性视频毛视频 | 嗯啊不要用力操逼视频cable| 亚洲av不卡一区二区不卡| 91综合精品国产九色| 亚洲欧美制服在线88p| 男人大丁丁射精AV汇编| 国产性色av一区二区| 好男人视频精品一二三区| 99视频在线观看免费的| 男人插女人鸡在线污视频观看| 日本熟妇内射一区二区| 超碰98人人插完整版在线观看| 夫妻性生活视频在线免费看| 婷婷精品国产一区二区| 亚洲欧洲国产精品香蕉网| 一本色道久久亚洲av红楼| 免费99精品国产自在现线丫| 操逼内射女生免费视频黄片| 激情毛片av在线免费看| 激情人妻av一区二区| 男人抚摸亚洲女大学生的大胸| 美女扒开大腿让人桶免费看| 精品久久只有精品做人人| 又粗又长鸡巴插进极品美女逼逼里| 久久免费视频久久免费视频99 | 亚洲一区二区三区中文| 午夜影院1000在线免费观看| 中文字幕激情av电影| 日韩午夜一区二区三区| 国产精品人妻熟女av | 国产一区二区最新在线| 精品国产高清中文字幕| 男生用鸡鸡捅女生屁股免费视频| 色综合久久88色综合久久天| 日韩午夜一区二区三区| 亚洲精品成人中文字幕| 米奇8888在线精品视频| 亚洲综合色一区二区三区蜜臀| 国产精品免费视频播放不卡| 超大鸡巴操处女小骚逼免费视频| 日本人妻在线播放一区| 精品国精品国产av自在久国产| 欧美日韩中文精品在线| 在线观看中文字幕二区| 久久久久久亚洲国产精品一区二区| av天堂天堂av日韩| 国产夫妻自拍刺激视频在线播放| 欧美精品aaaa久久久| 国产精品久久久久久久第一福利| 国产在线观看一区二区三| 97精品伊人久久大香| 日韩爱爱视频在线观看| 亚洲AV无码一区二区三区动漫| 亚洲一区二区天堂在线| 99久久视频久久热视频| 久久香蕉国产线看观看6 | 黑丝视频在线播放91| 强插少妇视频一区二区三区| 丁香花在线视频观看免费| 韩国三级一区二区三区| 夫妻性生活视频在线直播| 日韩一区二区三区东京热 | 探花农村老头操老妇说话对白| 美女脱光衣服露出奶头和尿头吊嗨| 国产熟女激情视频自拍| 国自产精品手机在线观看视| 久久午夜无码鲁丝片午夜精品| 中国一级做a爰片久久毛片| 亚洲免费视频区一区二| 一本色道久久亚洲av红楼| av精彩天堂在线观看| 99热这里只有精品网站| 精品国产三级国产普通话| 男人把鸡鸡捅进美女屁骨里| 日韩美女一区二区三区在线观看| 五月婷婷六月丁香亚洲综合| 亚洲熟女国产午夜精品| 91麻豆国产自产在线观看亚洲| 五十老熟女高潮嗷嗷叫| 美女av一区二区三区| 久久国产精品免费看小草| 这里都是精品熟女内射| 日韩欧美在线观看黄色| 亚洲国产精品成人综合片 | 97精品在线视频播放| 中文字幕一区二区三区乱码人妻| 国产女主播作爱在线观看 | 精品国产一区二区三区蜜殿最| 亚洲欧美制服在线88p| 日本肥老熟妇在线观看| 极品美女高潮精品16p| 精品国产一区二区三区卡| 91性高久久久久久久久久久| 久久精品国产亚洲AV麻豆蜜芽 | 亚洲精品无码专区在线观看| 国产乱码精品一区二区三区播放| 国产自拍偷拍在线福利| 亚洲成人av免费在线看| 午夜亚洲理论片在线观看| av男人在线东京天堂| 亚洲天堂av在线观看免费| 久久精品国产在热亚洲| 丰满人妻连续中出中文字幕在线| 亚洲一区日韩二区精品| 国产精品污双胞胎在线观看| 97国产精品97久久| 性生活免费在线观看视频| 久久精品av免费观看| 中文人妻无码一区二区三区在线| 大奶女人被操逼操的崩溃| 国产免费内射又粗又爽密桃视频| 国产精品成人久久综合| 啊好爽操我逼快用鸡巴操我视频| 看日逼的看日逼的看日逼的看日逼| 香蕉欧美在线视频播放| 精品自拍视频国产免费自拍视频| 日本高清少妇一区二区三区| 操逼啊口爆啊rrr中途啊免费| 日本女优禁断视频中文字幕| 精品日韩av在线免费观看| 国产免费一区二区三区最新6| 国产黄片一级二级三级| 丰满人妻连续中出中文字幕在线| 欧美一区二区三区 中文字幕| 无码少妇一级av片在线观看| 人妻视频在线一区二区三区| 一级做a爰片久久毛片毛片| 国产精品女同性一区二区| 欧美91精品一区二区三区| 色眯眯日本道色综合久久| 猛男人插女人逼里面操逼| 久久这里只有视频精品| 久久亚洲精品专区蓝色区| 男生把小鸡鸡插到女生阴巢的视频| 中文字幕一区二区人妻秘书| 国产日韩欧美第一区二区 | 精品国语自产拍在线观看| 欧洲日韩国产一区二区| 伊人久久大香线蕉亚洲av| 亚洲国产精品成人综合片| 国产黄片一级二级三级| 欧美特黄片在线免费播放| 人妻精品久久一区二区| 深夜欧美福利在线视频| 在线观看一区二区三区亚洲 | 日日噜噜噜噜夜夜爽亚洲| 丰满人妻连续中出中文字幕在线| 亚洲婷婷熟妇熟女在线| av亚洲中文字幕精品| 久久午夜无码鲁丝片午夜精品 | 中文字幕激情av电影| 中国亚洲女人69内射少妇| 免费人成视频app不收费| 久久久久亚洲精品国产av麻豆 | 亚洲AV成人片色在线观看高潮| 美国女人大兵的大鸡巴操男人的逼| 日逼大阴户听书性爱刺激| 中文人妻av一区二区三区 | 亚洲黄片在线播放视频| 国产精品色多多在线观看| 国产欧美精品久久99亚洲| 青青草99久久这里只有精品| 十八禁网站免费在线观看| 我爱美女小骚骚的小骚逼| 精品人妻一区二区三区中文字幕 | 日韩欧美三级影片在线观看 | 国产精品亚洲综合图区| 色偷偷人人澡久久超碰91蜜臀 | 91人妻人人澡人人爽人人精品一| 强奷漂亮的护士中文字幕| 麻豆国产成人AV高清在线观看| 亚洲精品一二三区不卡| 精品国产一区二区三区卡| 99国产精品九九视频免费看| 88v中文字幕熟女人妻一区| 韩国免费A级毛片久久不卡片 | 中文字幕亚洲欧美日韩在线不卡| 视频一区中文字幕在线观看| 欧美高清精品视频在线| 搡女人真人视频不用下载| 2020国内精品自在自线| 人妻久久久一区二区三区视频| 国产日韩欧美第一区二区 | 亚洲国产精品一区二区三区四区| 黄片视频免费在线观看播放| 国产av自拍日韩高av| 蜜臀视频免费国产在线视频| 国产热女视频一区二区三区| 欧美日韩国产一二三四区永久在线 | 黄色网色网色网色网色| 大鸡巴操美女骚逼嫩穴视频| 国产精品国产午夜免费看| 国产三级精品在线不卡| 国产精品为爱搞点激情| 97精品久久九九中文字幕| 乱淫一区二区三区麻豆| 我爱美女小骚骚的小骚逼| 大鸡巴插入少妇骚穴视频| 成人经典视频免费在线| 久久人妻久久人妻涩爱 | 在线日韩AV免费永久观看| 又黄又爽有无遮挡的网站| 欧美日韩艺术电影在线| 亚洲男人天堂在线免费| 国内综合视频一区二区三区| 男人大丁丁射精AV汇编| 欧美激情日韩精品久久久| 99视频在线观看免费的| 亚洲成人自拍在线视频| 白白色手机免费在线视频| 亚洲一区精品二人人爽久久| 97精品久久九九中文字幕| 欧美大鸡巴猛插肥婆视频| 公车好紧好爽再搔一点浪一点| 欧美日韩免费r在线视频| 好吊视频免费在线观看| 国产精品亚洲福利在线| 四虎永久精品在线免费| 97精品国产自产在线观看永久| 久久综合中文字幕一区二区| 中国一级毛片免费看视频| 蜜臀av国内精品久久久久久久久| 国产精品久久久久精品三级下载| 久在线观看视频在线观看免费| 污污污视频在线观看免费视频| 男人抚摸亚洲女大学生的大胸| 先锋影音在线资源91| 久久久久亚洲精品国产av麻豆 | 少妇 特黄一区二区三区| 天天躁日日躁狠狠躁日日| 丰满人妻一区二区三区视频53| 伊人久久大香线蕉亚洲日本强| 在线视频自拍日韩精品一区| 亚洲精品中文有码字幕| 亚洲欧美日韩欧美一区二区三区| 亚洲国产精品一区二区久久预告片 | 一卡二卡精品在线免费| 欧美精品久久天堂久久精品| 国产亚洲综合一区二区| 中文字幕在线观看欧美日韩| 亚洲精品在线韩国日本| 国产富婆高潮一区二区| 欧美日韩国产成人高清视频 | 在线播放免费观看AV片| 黄色段片一区二区三区| 亚洲精品一区二区毛豆| 亚洲欧洲日韩另类99在线| 99国产精品亚洲一区二区三区| 欧美日韩亚洲重口另类| 夜夜爽狠狠天天婷婷五月| 99久久婷婷国产综合精品免费| 91精品麻豆日日躁夜夜躁| 国产亚洲一区二区三区精品久久| 欧美人妻少妇精品久久| 国产精品午夜一区二区三区四区| 亚洲av天堂在线免费观看| 中文字幕人妻丝袜一区一三区| 亚洲一区二区黄色录像| 久久精品国产亚洲av护士长| 日日摸夜夜添夜夜添日韩| 啊啊草死我爽日本在线观看| 免费成人在线不卡视频| 男人大鸡巴日逼视频免费| 国产欧美又粗又长又爽| 欧美三级视频一区二区三区| 在线观看日本一区二区三区四区| 久久精品无码一级毛片温泉| 国产男女猛进猛出粗暴啊| 97精品视频在线观看| 黄色顶级男和女性视频毛视频| 成年人大片在线观看视频| 色哟哟一区二区三区四区视频| 国产午夜福利在线观看红色一片天| 中文字幕亚洲欧美日韩在线不卡| 极品人妻手机视频在线| 日韩一区二区三区免费观看的人| 中国无码AV看免费大片在线| 大鸡巴厂长狂操女人的无毛小逼| av日韩免费在线观看| 性生活AV在线直播成人社区| 在线观看日本一区二区三区四区| 啊我要吃大鸡巴 插到骚逼里好大| 中文人妻熟妇精品乱又伧老牛在线| 91九色成人在线观看| 亚洲最新尤物在线视频| 国产91精品系列在线观看| 国产成人精品无人区一区| 激情五月天亚洲日婷婷| 国产又黄又爽又粗的视频在线观看 | 中文亚洲精品在线观看| 高颜值午夜福利在线观看| 绿奴舔屁眼哦哦哦操我啊哦哦哦| 男人下面插入女生下面啊啊啊视频| 亚洲精久久久久久无码精品| 美女露出逼让男生用鸡巴捅| 国产在线乱码一区二区三区潮浪 | 快插我的逼逼里好爽的免费视频| 亚洲免费视频区一区二| 亚洲精品精品日本日本| 亚洲欧美在线视频第一区第二区| 日日摸夜夜添夜夜添日韩| 日本肥老熟妇在线观看| 91亚洲欧美综合高清在线| 欧美乱妇高清无乱码亚洲欧美| 在线观看男人鸡桶女人的| 久久999精品米奇久久久| 欧美日韩国产精品系列区| 探花农村老头操老妇说话对白 | 国际b站免费直播入口MBA智库| 17岁日本免费完整版观看| 社保交够15年可以辞职等退休吗| 久久久久久曰本av免费免费看| 国产中文成人精品久久久| 亚洲欧美国产专区在线观看| 男人的天堂一级毛片视频| 骚货操死你捅死你骚逼视频| 欧美日韩中文亚洲v在线综合| 男生大肉捧插女生的视频| 九九热视频大全精品免费 | 中文字幕中文有码在线| 99国产精品黄色片子| 亚洲一区二区精品免费观看| 成人依依网站亚洲综合久| 亚洲另类激情综合偷自拍| 一区二区三区欧美影片| 国产传媒第一页在线观看 | 男生把坤巴放进女生屁屁| 中国一级毛片免费看视频| 色吊丝最新永久免费观看| 在线蜜臀av中文字幕| 日本高清少妇一区二区三区| 国产男女猛进猛出粗暴啊| 国产日韩精品专区免费| 嗯啊男人捅女人小穴视频| 亚洲精品九一国产九九蜜桃| 久久精品国产亚洲av护士长| 亚洲日本乱码一区二区| 一区二区三区毛片国产一区| 99久久婷婷国产综合精品免费| 一级做a爰片久久毛片毛片 | 美女高潮潮喷冒白浆免费视频| 国产黄色一级大片全集| 天天操操夜夜操97| 91亚洲欧美综合高清在线| 深夜福利av在线播放| 久在线观看视频在线观看免费 | 午夜99精品一区二区三区| 精品亚洲一区二区三区91| 国产在线观看黄av免费| 91精品国产福利在线观看你| 中文字幕中文字幕乱码| 强插少妇视频一区二区三区 | 亚洲av人片乱码色午夜| 女优日本中文字幕五十| 日韩在线国产一区二区| 少妇一夜一次一区二区| 草骚逼美穴骚逼美穴骚逼美穴骚逼| 看操小日本女人乱伦逼视频| 亚洲国产免费一区二区| 国产视频一区二区三区免费看| 欧美逼逼一区二区三区| 日韩欧美一区二区不卡在线观看视频| 国产爽又爽视频在线观看| 天堂a免费视频在线观看| 亚洲国产不卡av在线| 久久热福利视频就在这里| 性生活AV在线直播成人社区| 亚洲美女一区二区暴力吞精 | 国产99久久精品一区二区300| 一卡二卡精品在线免费| 国产蜜臀大码av影院| 日韩情色电影中文字幕| 92午夜福利在线视频| 全部免费特黄特色大片看片| 亚洲色图偷拍一区二区| 91久久精品一区二区三区色欲 | 99久视频在线观看免费| 97精品在线视频播放| 韩国三级伦理在线观看| 久久这里只有视频精品| 国产一区二区四区在线观看视频| 欧美人妻少妇精品久久| 中文字幕激情av电影| 亚洲国产欧洲综合997| 美女张开腿让男人桶到爽裸体| 男人大鸡巴插进美女逼里视频强奸| 91中文字幕在线永久| 在线日韩人妻高清在线| 国产非洲一区二区三区久久久久久 | 欧美成人三区四区在线观看| 男人把女人捅到爽爆免费视频| 欧美一区二区三区裸体| 亚洲天堂一区二区免费不卡| 色偷拍亚洲偷自拍视频| 国产日韩欧美第一区二区| 好爽好硬进去了好紧视频| 亚洲中文字幕有码视频| 国产天堂av在线免费观看 | 欧美熟妇另娄久久久久久| 日日噜噜噜夜夜噜噜噜| 日本黄色中文字幕不卡在线 | 亚洲中久无码永久在线看| 国产精品亚洲欧美久久| 未满十八禁止在线播放| 成人免费在线视频日韩| 隔壁人妻bd高清中文字幕| 国产日本亚洲一区二区 | 粉嫩女大学生自慰喷水白虎小穴| 国产精品免费网站免费看| 国产在线乱码一区二区三区潮浪| 国产精品无码免费一级毛住a| 国产另类在线欧美日韩| 思思99热这里只有精品| 99久久精品免费看国产免费软件| av在线播放亚洲天堂| 欧美三级经典影片视频| 亚洲卡通动漫精品中文在线观看| 国产精品国产三级国产普| 美女扒开大腿让男生捅高潮的视频| 亚洲伊人情人综合网站| 大鸡巴不停抽插双插喷水漫画视频 | 亚洲一区二区三区精品久久av| 日本中文一二区有码在线| 性夜国产夜春夜夜爽三级| 亚洲成人自拍在线视频| 久久99精品久久久久久手机免费| 要肉棒插死骚货黄色视频| 性刺激特黄毛片免费视频| 亚洲国产精品一区二区久久预告片| 激情文学婷婷六月开心久久| 日本老师做三 片乱码视频| 成年人午夜黄片视频资源| 欧美日韩精品成人影院| 操逼激情破处大鸡吧插进| 亚洲精品美女在线观看播放| 人妻少妇精品视频区二| 久久午夜av一区二区| 久久精品国产欧美电影| 亚洲综合色成人影院| 国产精品超碰在线97| 黄色顶级男和女性视频毛视频| 一区二区三区亚洲免费看| 亚洲理论中文在线观看| 88v中文字幕熟女人妻一区| 国产va免费精品观看精品视频| 青青青在线视频免费播放| 性刺激特黄毛片免费视频| 祼体美女上厕所被操视频APp| 在线免费看片国产精品| 99re7在线观看国产精品| 精精国产xxxx视频在线不卡| 国产日韩欧美在线视频播放| 亚洲熟女av一区二区三区| 国产在线精品免费播放| 66mio人妻精品一区二区三区 | 美女主播视频福利一区二区| 超碰人人爽爽人人爽人人| 亚洲免费视频区一区二| 亚洲一区二区精品免费观看| 亚洲国产成人精品一区91| 国产一区二区三区二区| 久久免费视频久久免费视频99 | 国产精品中文字幕日韩精品| 97精品日韩欧美一区二区三区| 国产精品v日本精品v欧美精品| 日韩精品女性三级视频| 中文字幕有码久久高清| 在线免费看片国产精品| 国产诱惑站着操性感美女小穴视频| 久久免费看美女高潮视频| 欧美日韩一区二区成人在线| 男女激情视频网站免费在线| 午夜亚洲精品中文字幕| 国产片高潮抽搐喷水免费| 可以在线观看的黄色av| 丰满少妇被猛烈进入无码蜜桃| 未满十八网站在线观看| 亚洲av一区一区二区三| 人妻熟女一区二区aⅴ在线视频| 男生用鸡鸡捅女生屁股免费视频 | 国产美女极度色诱视频| 久久精品亚洲国产日韩| 亚洲欧美另类丝袜在线| 色欲永久无码精品一二三区| 激情人妻av一区二区| 18出禁止看的色视频| 午夜福利宅福利国产精品| 欧美逼逼一区二区三区| 国产精品免费网站免费看| 中国一级全黄的免费观看 | 天天躁日日躁狠狠躁日日| 欧美日韩亚洲人妻在线| 亚洲欧洲中文日韩a乱码| 人妻视频在线一区二区三区| 色一情一乱一区二区三区码| 国产精品为爱搞点激情| 亚洲av伊人久久综合性色| 欧洲亚洲综合一区二区三区| 女人的天堂av网免费| 玖玖资源网站最新网站| 亚洲熟妇熟女久久精品一区| 天天久久狠狠伊人第一麻豆 | 少妇中出中文字幕久久久| 男人天堂一区二区av| 国产黄色一级大片全集| 欧美日韩另类精品激情| 国产非洲一区二区三区久久久久久| 亚洲婷婷熟妇熟女在线| 91精品久久午夜大片 | 成人日韩精品在线观看| 抖阴视频啊啊啊好舒服大鸡吧| 国产一区二区四区在线观看视频 | 极品人妻手机视频在线| 日韩精品在线小视频| 日韩精品无乱一区二区| 五月天丁香婷婷狠狠狠| 漂亮的小蜜桃在线观看| 午夜天堂精品一区二区| 无码系列久久久人妻无码系列| 日本人体精品一区二区三区视频| 国产又猛又黄又爽无遮挡| 欧美欧美欧美欧美在线| 操逼肥的一线天白虎女人 | 日韩在线观看免费av| 无遮挡男女一进一出视频真人| 在线观看永久免费黄色| 久久天天躁狠狠躁夜夜婷| 亚洲一级毛片免费在线观看| 国产视频久久久久久久久久久| 在线播放国产精品自拍| 日韩av不卡在线播放| 老頭搡老女人毛片視頻在錢看 | 黑人巨大精品欧美完整版| 大鸡巴抽插女人骚逼视频| 国产亚洲一区二区三区精品久久| 果冻传媒精选麻豆二区| 人妻在线有码中文字幕| 久久精品国产亚洲av护士长| 看中文字幕一区二区三区| 91精品国产福利在线观看你| 饥渴少妇高潮露脸嗷嗷叫| 在线播放免费人成日韩视频| 十八禁真人无摭挡观看| 国自产精品手机在线观看视| 国产无遮挡又黄又爽又大| 香蕉欧美在线视频播放| 极品美女高潮精品16p| 91精品极品在线免费观看| 黑人爆操中国明星美女小嫩逼视频| 猛男人插女人逼里面操逼| 一本到在线观看免费收看| 国产蜜臀av在线一区在线| 亚洲欧洲一级av一区二区久久| 亚洲人妻一区二区久久| 男人鸡巴插进女人B里的视频| 嗯啊不要用力操逼视频cable| 美女张开腿让男人桶到爽裸体| 日韩一区二区在线精品| 国精产品一品二品国精品| 国产成人无码区免费AV片蜜臀| 欧美乱妇高清无乱码亚洲欧美| 成人日韩精品在线观看| 青青草青娱乐免费在线视频| 日本一区二区三区精品视频在线| 美日韩成人av免费久久| 国产白嫩无套视频在线播放蜜桃| 黑皮体育生大屌射精合集| 亚洲大色堂人在线视频| 国产va免费精品观看精品视频 | 在线播放免费人成日韩视频| 男生大肉捧插女生的视频| 精品人妻伦九区久久69| 亚洲毛片成人在线观看| 少妇中出中文字幕久久久| 无码精品人妻一区人妻斩| 视频一区中文字幕在线观看 | 91精品人妻一区二区蜜桃| 日本在线不卡v2区| 欧美成人综合在线观看视频| 呃呃啊啊啊好爽快到了黄色| 精品国产一区二区三区卡| 又嫩又硬又黄又爽的视频| 久久精品国产在热亚洲|