操逼啊口爆啊rrr中途啊免费-中文字幕av网一区二区-中文字幕久久精品波多野结百度-国产三级视频在线观看

雙極性晶體管

二極管

ESD保護(hù)、TVS、濾波和信號(hào)調(diào)節(jié)ESD保護(hù)

MOSFET

氮化鎵場(chǎng)效應(yīng)晶體管(GaN FET)

絕緣柵雙極晶體管(IGBTs)

模擬和邏輯IC

汽車應(yīng)用認(rèn)證產(chǎn)品(AEC-Q100/Q101)

IAN50006 - Power MOSFETs in linear mode

This interactive application note contains simulations to aid understanding of MOSFET linear mode operation and thermal instability while applying SOA temperature derating methods to design more robust and reliable circuits.

Author: Christian Radici, Applications Engineer, Manchester.

This interactive application note contains embedded Cloud based simulations to augment the text.

To open the embedded simulation, simply hover over the simulation image. Left click anywhere in the graphic area once the central play button changes in colour. This opens the schematic in the Cloud environment. See the interactive application note tutorial page for more details on how to use the simulations. See accompanying application note: AN50006.

Download AN50006

Introduction

Power MOSFETs are extensively used as switches due to the very low RDSon and thus low conduction losses. However, in many applications MOSFETs are used in their saturated state, with certain cases requiring both these modes to be robust and performant within the same device.

This interactive application note aims to describe the main characteristics of linear mode operation from a theoretical standpoint. Nevertheless, application-oriented topics are discussed in case of HotSOA derating and pulse shape conversion. Example simulations are included in the relative paragraphs.

[1] RDSon operation trajectory; [2] linear mode operation trajectory
Figure 1. Example of MOSFET output characteristic ON/OFF trajectories

Linear mode definition

During linear mode a MOSFET operates in its saturated state, or saturation region, and it behaves as a (gate) voltage controlled current source. Contrary to what happens when fully ON (or fully enhanced), the drain-source impedance is relatively high, resulting in high power dissipation. In linear mode, the power is given by the product of the drain current and the drain-source voltage (ID × VDS), which are both high at the same time.

Linear mode can be described analytically by the set of equations below. The MOSFET needs to be ON (Equation 1) and the VDS greater than the overdrive voltage (VOD) (Equation 2). If the previous two conditions are met the drain current will be proportional to the square of VOD (thus the applied VGS) as shown in Equation 3, where k is a technological parameter fixed with the type of trench technology used.

(Eq. 1)  

(Eq. 2)  

(Eq. 3)  

MOSFETs can operate in linear mode in two ways: indirectly, for a short time, as a consequence of switching or directly, for much longer time. In fact, linear mode is traversed every time a MOSFET switches ON and OFF. With reference to Fig. 1, during turn ON the MOSFET’s working point moves from high VDS and zero ID (OFF state) to a low VDS and high ID (curve 1). Certain applications require MOSFETs to purposely operate in linear mode (curve 2). In this case it is recommended to:

  • Guarantee that the device operates within the SOA curve, for a given pulse duration and mounting base temperature (Tmb)
  • Employ adequate thermal management techniques.

Examples of typical linear mode applications

Simulation 1 - Airbag applications

Simulation 1 - Airbag applications

Simulation 2 - Active clamp

Simulation 2 - Active clamp

Simulation 3 - Capacitor pre-charge (soft start / hot swap)

Simulation 3 - Soft start

Simulation 4 - LDO (low dropout) regulators

Simulation 4 - LDO regulator

SOA graph

The safe operating area (SOA) graph gives an indication of the amount of power a device can safely handle before failing. The graph shows the drain current plotted against the drain-source voltage. The limit depends on the time duration of the power and the working region the MOSFET operates in. The graph is valid only for a constant mounting base temperature of 25 ?C and either a single pulse or DC operation. The SOA is especially useful in case of linear mode operation. Fig. 2 shows the area below which a MOSFET can safely and reliably operate for a pulse of 1 ms and the limit at VDS = 3 V and pulse of 1 ms.

Figure 2. SOA maximum current limits for 1 ms and at VDS = 3 V and 1 ms pulse

Fig. 3 shows how the SOA graph can be subdivided depending on the MOSFET’s working region (a time pulse of 1 ms is considered).

  • The yellow line corresponds to the limit in RDSon mode
  • The green line indicates the limit imposed by the package
  • The blue line shows the avalanche limit (at the maximum rated voltage, before avalanche occurs).
  • The red line shows the limit during linear mode operation. This limit is verified experimentally by keeping VDS constant while the current is pulsed for a given duration. As shown in Equation 4, it depends on the thermal impedance of the MOSFET (Zth), maximum junction temperature (Tj(max) = 175 ?C) and mounting base temperature (Tmb).

For a more in-depth description of the SOA limits see AN11158 Understanding power MOSFET data sheet parameters (3.1 Safe Operating Area (SOA) curves).

(Eq. 4) 

  

Figure 3. SOA graph; curve limits

From Equation 4 it follows that the limit increases (more power can be dissipated) as the time pulse decreases. Finally, the dashed red line indicates the Spirito region, where thermal instability occurs.

Figure 4. Transfer characteristics showing regions of positive and negative temperature coefficient

Temperature dependency

Thermal instability

For a fixed VDS, the variation of drain current against gate bias voltage is plotted in the transfer characteristic graph, shown in Fig. 4. Two lines are used to show the MOSFET operation at a junction temperature of 25 °C (solid line) and 175 °C (dashed line). For a low enough VGS, the MOSFET will conduct more current if it operates at 175 °C than at 25 °C, due to the negative temperature coefficient of the threshold voltage (VGSth), as shown in Fig. 5. In this case the MOSFET is operating in a region of thermal instability, identified by a positive temperature coefficient of the current. This holds true even when considering a single spot on the silicon die [1].

However, this phenomenon can be avoided. In fact, for a given VDS, there is a critical current above which there is a negative feedback and thus thermal stability. This is known as the Zero Temperature Coefficient (ZTC) point.

Figure 5. Gate-source threshold voltage as a function of junction temperature

On the SOA graph, thermal instability is indicated by a two-slopes line and an additional inflexion point, as shown in Fig. 6 (the inflexion point is located at 5 V for a 1 ms pulse). The theoretical limit, in the dashed blue line, is calculated using Equation 4, where Zth = Zth(j-mb). This limit can be found using an RC thermal model, like the Cauer model shown in Fig. 7. The dashed red line indicates the real performance of the device. In this case Zth ≠ Zth(j-mb) and therefore the limit cannot be found using an electrical model. The reduction in performance can be quite severe: in this case for a VDS of 20 V, the maximum current the MOSFET can handle goes from a theoretical 60 A down to around 15 A (75% less). This phenomenon is also known as Spirito effect, and it is  caused by the uneven distribution of current across the silicon die. Below the ZTC point, if a small region is at a higher temperature than the rest of the die, it will draw more current and dissipate more power becoming even hotter. This process eventually leads to thermal runaway and the destruction of the MOSFET as a three-terminal short. Burn marks will appear near the center of the die and close to the die bonding structure, as documented in AN11243 Failure signature of electrical overstress on power MOSFETs (1.3 Linear mode operation).

Figure 6. SOA graph: Spirito effect

Figure 7. Cauer RC thermal model

Moreover, these hotspots are observed to occur more frequently at wider power pulses.

With reference to Fig. 6, for a time pulse of 10 ms the Spirito effect takes place at a lower VDS (around 3 V) than for the 1 ms pulse (5 V) while DC operation is limited by thermal instability at any voltage.

The uneven distribution of current across the silicon die is influenced by uniformity of the MOSFET cells and integrity and uniformity of the die attachment. Besides, the type of die bonding technology can also have a significant impact. As shown in Fig. 8, wire bonding increases current density in small points of the die that can become hot spots. On the other hand, the copper clip of an LFPAK prevents localised current crowding reducing the likelihood of hot spot formation.

Figure 8. Current crowding contours for a) LFPAK88 and b) D2PAK packages
Note: current density contour scaling is different for LFPAK88 and D2PAK, see accompanying colour scaling

Also, cell density influences the shape of the SOA. Older trench (or planar) technologies show a higher RDSon, due to the wider cell pitch and thus lower cell density. For a given total drain current, cells in older technologies are more likely to operate beyond the ZTC point, where operation is thermally stable, since the current per cell is higher. Consequently, for a given die size, older trench (or planar) technologies show a higher RDSon but in turn perform better in linear mode.
The innovation introduced with new trench structures has deeply increased performances in some of the other fields, particularly in switching, avalanche and steady state behavior. Newer technologies show generally worse linear mode capability, however, whenever harder requirements have to be met the designer can either choose (in case the thermal design cannot be improved): a MOSFET with a lower Rth(j-mb) (corresponding to a bigger die), a bigger package, an older technology (with lower cell density) or a MOSFET from Nexperia’s ASFET portfolio with Enhanced SOA capability.

5.2. Hot-SOA derating

The SOA graph in Nexperia’s data sheets is valid only for a mounting base temperature of 25 °C. If the mounting base is held at a different temperature, then the graph must be derated, as generally the capability at other temperatures is not characterized. In this case, either an approximated or an exact indication of the new limit is found, depending on the device’s working region.

There are three main derating methods depending on which quantity is scaled or kept constant. If the current is scaled, then the voltage will remain constant, vice versa if the voltage is scaled, the current will remain constant. The third option is to scale both voltage and current thus keeping the power constant. The RDSon, package, breakdown and linear mode limits are all predicted in the same way by these methods. The only difference is in how the Spirito region is approximated, i.e. the position of the inflexion point. For a given VDS the current scaling method returns the highest limit, while the voltage scaling the lowest. Generally, when compared with a measured Hot-SOA every method is observed to underestimate the device’s real performance, which gives some safety margin from thermal instability. As shown in Fig. 9 the current scaling method usually gives the best Spirito approximation.

Figure 9. Example of SOA derating methods against measurement for the BUK7Y2R0-40H

Figure 10. Normalized total power dissipation as a function of mounting base temperature: power scale factor

Table 1 summarizes the current limits predicted using the three methods and measurement at VDS = 30 V, Tmb = 125 °C and pulse of 1 ms.

Table 1. Scaling methods against measured data
ID limit: VDS = 30 V; Tmb = 125 ?C; pulse width = 1 ms
Measured Current scaling Voltage scaling Power scaling
4 A 1.5 A 1 A 0.4 A

Before applying any of these methods, the power scale factor (kPSF) must be calculated. This can be obtained by looking at the plot in Fig. 10, or using Equation 5. The graph is given in any Nexperia’s data sheet and represents the normalized power dissipation as a function of mounting base temperature. Due to its double scaling, the power scaling method make use of a different coefficient calculated using Equation 6.

(Eq. 5) 

(Eq. 6)  

Figure 11. Data sheet SOA: current limit for Tmb = 25 °C

As an example, a MOSFET’s current limit is calculated using the current scaling method for: Tmb = 100 °C, VDS = 3 V and a pulse width of 1 ms

  1. The current limit at Tmb = 25 °C is 400 A, as shown in Fig. 11
  2. kPSF is calculated using Equation 5 and is exactly 0.5 (i.e. 50%)
  3. The new limit at Tmb = 100°C is 200 A, as calculated using Equation 7. 

(Eq. 7)  

Figure 12. Derated SOA limits for Tmb = 100 ?C and pulse of 1 ms, using current scaling method

The complete Hot-SOA graph can be found by taking the following steps (current scaling method is used but this can be adapted to the other methods):

  • The RDSon limit is not derated since it is calculated using RDSon at 175 °C
  • Linear mode inflexion point and breakdown limit are shifted downwards, the new current limits are found using the power scale factor (in this case 0.5). A new inflexion point for the Spirito region is generated at half the current of the original one
  • Finally, the lines can be extended to the endpoints using the same slope.
Power_shape_conversion_triangular_pulse
Figure 13. Power shape conversion of triangular pulse with MOSFET operating outside the Spirito region

SOA: pulse shape conversion

In certain applications the power may not be a rectangular pulse, or the duration may be different from the set given in the SOA graph. In both cases a power shape conversion can be carried out and operation within SOA verified. This conversion is exact if the MOSFET is operating in ohmic mode or linear mode. However, it might be inaccurate for operation in the Spirito region.

If the MOSFET is not working in Spirito region, the pulse can be converted into a rectangular one carrying the same amount of energy, by adjusting either the duration or the peak. Fig. 13 shows the conversion for a triangular power pulse. If the pulse duration is not part of the SOA graph, the limit can be calculated using the value of thermal impedance found in the data sheet (or an RC thermal model) and Equation 4. The use of thermal and electrothermal models is always recommended to accurately predict the junction temperature.

If the device is working in Spirito region, the pulse cannot be converted by means of the thermal impedance. In this case, the use of thermal and electrothermal models gives only an average junction temperature, which doesn’t reflect hot spots’ temperature. A conservative approach would be to consider a rectangular pulse with the same peak and duration of the original one. However, empirical evidence would suggest that triangular pulses can be converted into rectangular ones having same duration but half the peak value. Testing has been conducted using the BUK7S1R0-40H and the active clamp circuit shown in simulation 2. It is worth noting that these results should be considered valid only for this specific device.

Figure 14.??MOSFET VDS and ID during active clamp

Active clamping is used in inductive switching, similarly to avalanche, however the device operates in linear mode at a lower clamping voltage than in avalanche. With switch sw1 on the closed position and MOSFET M1 turned ON, current can flow through the main circuit. Once the inductor is “charged” the MOSFET is switched OFF. The energy stored in the inductor induces a high voltage that breaks down the Zener diode ZD1. This, in turn, clamps the gate voltage turning ON the MOSFET, which absorbs the energy released by the inductor. During this last activation the MOSFET is working in linear mode, the VDS is fairly constant while its drain current decreases, as shown in Fig. 14 (simulated). Therefore, the dissipated power is a triangular pulse lasting 1 ms.

 

 

(1) IAL; (2) VCL = 20 V; (3) VCL = 22 V; (4) VCL = 28 V
Figure 15. Current versus time capability of avalanche and active clamp of BUK7S1R0-40H

The circuit is used to test the BUK7S1R0-40H at VDS of 20 V, 22 V and 28 V. The limit is obtained by derating the current at which destruction occurs by applying the same methodology used for the SOA in data sheets. Fig. 15 shows the current capability against time in avalanche (IAL) and during active clamp at different clamping voltages. Table 2 summarises the results from the graph at a pulse of 1 ms. The current capability for a triangular pulse is shown to be around 2x the one for a rectangular pulse. The current decreases as the voltage increases, as expected in case of rectangular pulses.

Table 2. BUK7S1R0-40H: triangular and rectangular pulse capability
Voltage 1 ms active clamp
current (A)
1 ms SOA (data sheet)
current (A)
20 35 16
22 31 14
28 15 8

The same principle applies to capacitive pre-charge, where the MOSFET dissipates a triangular power pulse. However, in this case the ID is constant and VDS decreases. The reducing voltage leads the working point to move towards the left of the SOA graph away from the Spirito region, with lower risks of thermal instability with respect to active clamp.

Summary

In this interactive application note an overview of power MOSFETs linear mode operation has been presented. Together with embedded simulations a brief theoretical introduction highlighting the main differences with RDSon mode, the link between linear mode and SOA have been described. This includes thermal instability (Spirito region), Hot-SOA derating methods and pulse shape conversion.

Reference

1 Electro-thermal instability in low voltage power MOS: Experimental characterization - IEEE; G. Breglio, F. Frisina, A. Magri, P. Spirito

Page last updated 09 May 2022.
91精品人妻一区二区蜜桃| 大鸡插黄在床上做运动不遮掩| 国产综合永久精品日韩| 国产精品女同性一区二区| 日逼大阴户听书性爱刺激| 国产精品久久久精品免费| 欲求不满人妻av中文字幕| 午夜福利宅福利国产精品| 精品国产一区二区三区卡| 日韩情色电影中文字幕| 在线播放免费人成日韩视频| 国产欧美精品一区二区性色| 两根肉棒操的好爽的视频| 五十老熟女高潮嗷嗷叫| 日韩欧美亚洲精品成人| 女优日本中文字幕五十| 91久久精品一区二区三区色欲| 色橹橹欧美在线观看视频高清免费 | 欧美二精品二区免费看| 日韩成人a片一区二区三区| 视频一区视频二区同事| 国产精品欧美国产精品| 学生妹被爽到高潮受不了视频| 艳妇臀荡乳欲伦69调教视频| 一区二区三区人妻在线| 国产福利午夜精品视频| 97视频精品免费观看| 日韩在线观看免费av| 嗯啊啊大鸡巴快用力肏我视频| 亚洲大色堂人在线视频| 中国一级毛片免费看视频| 中文字幕中文字幕乱码| 男生鸡巴操女生逼逼视频。 | 色偷拍亚洲偷自拍视频| 国产精品v日本精品v欧美精品| 日本女中年在工作隐私小鸡巴操逼 | 久在线观看视频在线观看免费| 国产农村av对白观看| 国产欧美日韩一区精品| 俄罗斯精品无码一区二区| 久久蜜臀一区二区三区av| 懂色av噜噜一区二区| 欧美日韩一区二区人妻| 亚洲精品黄网在线观看| 欧美日韩综合不卡一区二区三区| 国产精品亚洲欧美久久| 美女国产黄色三级片在线播放| 撕开奶罩揉吮奶头大尺度视频| 东北老女人被操的大声喊逼痒死| 日韩精品少妇专区人妻系列| 色哟哟一区二区三区四区视频 | 男人下面插入女生下面啊啊啊视频 | 91男厕偷拍男厕偷拍高清| 亚洲人妻av一区二区 | 国产精品女同性一区二区| 米奇8888在线精品视频| av日韩免费在线观看| 人妻少妇精品中文字幕av蜜桃| 国产二级一片内射视频| 亚洲色图偷拍一区二区| 欧美国产大片一区视频| 在线免费看片国产精品| 日日噜噜噜夜夜噜噜噜| av天堂午夜在线观看| 久久精品国产99久久6动漫欧| 2022AV亚洲天堂在线观看| 欧美超碰人人爽人人做人人添| 正在播放国产无套露脸视频| 亚洲综合国产伊人五月婷| 国产三级在线观看官网| 欧美三级经典影片视频| 我想看黄片久久久久久久久久久| 欧美日韩欧美性生活视频| 成人精品一区二区三区不卡| 国产成人无码区免费AV片蜜臀| 天堂av毛片免费在线看| 国产熟女激情视频自拍| 中文人妻av一区二区| 亚洲av无码乱码国产精000| 一区二区三区欧美影片| 无码无羞耻肉3d动漫在线观看 | 大大大长屌姓交口交观看| 久久香蕉国产线看观看6| 欧美午夜精品福利在线观看| 日韩亚洲人妻一区二区| 精品日韩av在线免费观看| 欧美成人动漫免费在线观看| 欧美A极v片亚洲A极v片| 果冻传媒精选麻豆二区| 中文字幕一区二区人妻秘书| 国产熟女一区二区三区四区| 极品人妻手机视频在线| 麻豆精品人妻一区二区三区99| 寂寞少妇让水电工爽了一| 亚洲国产精品毛片av在线下载| 美国妓女与亚洲男人交配视频| 国产成人av在线观看| 欧美日韩中文精品在线| 美日韩一级片欧美一级片| 深夜福利一区二区三区欧美| 2020国内精品自在自线| 国内少妇自拍视频专区| 呃呃啊啊啊好爽快到了黄色| 搜索黑人性欧美大战久久| 成年免费大片观看在线| 不卡av免费在线网址| 亚洲高清中文字幕综合网| 无情的大屌操骚穴的视频| 无码系列久久久人妻无码系列| 日韩一区二区三区影片| 美女扒开屁股让男人桶大奶子骚逼| 欧美日韩人妻精品一区二区在线 | 国产黄色网页在线观看| 久久久久久精品国产一区| 精彩视频尤物视频在线| 人妻中文字幕有码在线视频| 波多野结衣在线观看一区二区三区| 国产精品欧美精品日韩精品| 激情春色欧美激情国产剧情| 美女主播视频福利一区二区| 国产人成91精品免费观看| 色婷婷综合五月在线观看| 欧美无遮挡在线国产不卡| 色综合久久久久久久激情| 91嫩草国产在线无码观看| 51短视频精品全部免费| 97国产精品97久久| 国产精品午夜久久久久久久密桃| 综合激情五月三开心五月| 欧美日韩午夜在线一区| 中文亚洲精品在线观看| 国产女主播作爱在线观看| 亚洲精品九一国产九九蜜桃| 国产性色av一区二区| 天天操操夜夜操97| 伦理片免费在在线视频观看| 奇米777狠狠色噜噜狠狠狠| 边吃奶边摸下我好爽免费视频| 久久精品国产99久久久| 插日日操天天干天天操天天透| 艳妇臀荡乳欲伦69调教视频 | 成人欧美一区二区三区1314| 国产精品午夜久久久久久久久| 一卡二卡精品在线免费| 精品国产三级国产普通话| 久久精品国产99久久久| 男人的天堂社区东京热| 人妻少妇精品中文字幕av蜜桃| 亚洲日本一线产区二线区| 91在线免费在线观看| 在线播放免费人成日韩视频| 国产亚洲精品成人av一区| 青青草99久久这里只有精品| 国产诱惑站着操性感美女小穴视频| av在线播放亚洲天堂| 久久精品美国亚洲av伦理| 国产大陆日韩一区二区三区| 97精品人妻一区二区三区视频| 国产亚洲精品成人av一区| 97精品视频在线观看| 久久久国产综合av天堂| 97碰碰车成人免费视频| 日本高清一区二区欧美| 日本精品一线在线观看| 天天操亚洲精品日韩欧美| 欧美日韩亚洲一区二区在线| av日韩免费在线观看| 九九久久精品视频免费观看| 性生活视频在线观看视频| 三级片无码高清免费国产| 草草影院黄色在线观看| 国产日本亚洲精品在线一二三四| 正在播放女子高潮大叫要| 探花农村老头操老妇说话对白| 国产精品不卡一区二区久久 | 黄片视频免费在线观看播放| 毛片内射一区二区三区| 日本是全亚洲最发达的国家| 少妇连续高潮爽到抽搐| 欧美激情网页一区三区| 高颜值午夜福利在线观看| 久久久精品欧美中文一区二区三区| 免费国产高清在线观看最新 | 国产成人无码区免费AV片蜜臀| 思思99热这里只有精品| 绿帽娇妻在卧室疯狂的呻吟| 日韩欧美亚洲国产精品幕久久久| 高清一区二区中文字幕| 131美女爱做视频高清在线| 99国产精品国产自在现线| 日本不卡二区在线观看| 国产精品污双胞胎在线观看| 99国产精品国产自在现线| 亚洲最新尤物在线视频| 五十老熟女高潮嗷嗷叫| 亚洲综合色一区二区三区蜜臀| 免费国产国语一级特黄aa大片| 搡女人真人视频不用下载| 深夜美女高潮喷白浆视频| 亚洲无线码中文字幕在线 | 91青青草原免费观看| 白白色视频免费在线观看| 正在播放干肥熟老妇视频| 欧美成人动漫免费在线观看| 玖玖资源网站最新网站| 成人国产亚洲欧美日韩| av在线中文字幕乱码| 亚洲一区二区三区网址| 先锋影音在线资源91| 久久精品免视看国产成人 | 欧美日韩综合不卡一区二区三区| 美女被大鸡巴插男内射欧美| 欧美日韩免费r在线视频| 国产精品色多多在线观看| 热99RE久久精品这里都是精品| 国产一卡二卡精品乱码| 久久久久精品午夜理论片| 丁香激情综合网激情五月| 国产综合永久精品日韩| 太大太粗好爽受不了视频| 中文字幕人妻熟女人妻av| 天堂a免费视频在线观看| av永久网站在线观看| 干黑丝袜美女的小骚穴影片| 淫荡小骚逼想要大肉棒视频| 日韩情色电影中文字幕| 伦理片免费在在线视频观看| 亚洲一区精品二人人爽久久| 大大大长屌姓交口交观看| 日本一区二区高清视频在线观看| 日韩在线观看免费av| 日韩精品女性三级视频| 色噜噜狠狠狠综合曰曰曰| 亚洲av天堂在线免费观看| 情色中文字幕在线观看| 久草福利资源在线播放| 男生把坤巴放进女生屁屁| 最新av国产在线播放| 五月婷婷久久综合激情| 午夜天堂精品一区二区| 少妇精品视频一区二区免费看| 免费99精品国产自在现线丫| 国产亚洲一区二区视频在线| 黑人巨大精品欧美完整版| 国产免费一区二区三区最新6| 91九色视频在线观看| 大奶女人被操逼操的崩溃| 无码少妇一级av片在线观看| 野花视频在线观看免费高清版| 99国产精品国产自在现线| 男人用力插美女下面的视频 | 欧美成人三区四区在线观看| 国产黄色一级大片全集| 99国产精品国产自在现线| 91福利区一区二区三区| 国产日韩欧美第一区二区| 国产熟女一区二区三区四区| 99热精品在线观看首页| 在线播放免费人成日韩视频| 国产日本亚洲一区二区 | 好男人视频精品一二三区| 视频一区精品中文字幕| 欧美日韩中文亚洲v在线综合| 国产精品久久久久久精三级| 日韩色视频一区二区三区亚洲| 中文人妻无码一区二区三区在线| 男人把鸡鸡捅进美女屁骨里| 中文人妻av一区二区| 亚洲伊人情人综合网站| 亚洲色图偷拍一区二区| 亚洲精品在线韩国日本| 国产诱惑站着操性感美女小穴视频 | 五月天丁香婷婷一区二区| 人妻在线有码中文字幕| 四房色播五月天婷婷丁香| 日韩午夜一区二区三区| 国产欧美又粗又长又爽| 久久999国产高清精品| 三级片无码高清免费国产| 又大又长又黄又粗又爽的视频| 日韩一区二区三区影片| 国产真实乱免费高清视频| 美女扒开双腿被捅的视频| 绝顶人妻中文字幕精品一区| 无码吃奶揉捏奶头高潮视频 | 亚洲av永久无码青青草原| 果冻传媒精选麻豆二区| 国产又猛又黄又爽无遮挡| 欧洲亚洲综合一区二区三区| 91精品人妻一区二区蜜桃| 日韩 有码 中文字幕 在线| 性感骚女爆射搞基喷水操软件下载| 扫码观看视频的二维码怎么生成| 搭讪人妻中文字幕系列| 在线视频自拍日韩精品一区| 国产精品为爱搞点激情| 国产日本草莓久久久久久| 欧美激情网页一区三区| 国产在线小视频免费观看| 国产综合永久精品日韩| 国产白嫩无套视频在线播放蜜桃| 最新av国产在线播放| 国产日韩精品专区免费| 国产一区二区三区粉穴| 青青青在线视频免费播放| 中文字幕中文有码在线| 亚洲国产欧美日韩各类| 久久精品中文字幕一二三| 大陆猛男大鸡巴操骚美女骚逼视频| 太大太粗好爽受不了视频| 激情文学婷婷六月开心久久 | 久草手机在线观看视频| 亚洲熟妇v一区二区三区色堂| 黑人精品一区二区三区av| 爽爽午夜福利视频一区二区| 国产一卡在线免费观看| 激情一区二区三区四区| 国产精品无码免费一级毛住a| 韩国床震无遮挡免费视频| 亚洲大陆免费在线视频| 国产精品大片在线播放| 亚洲熟妇v一区二区三区色堂| 亚洲成人自拍在线视频| 深夜视频在线观看你懂的| 国产传媒小视频在线观看| 亚洲AV成人片色在线观看高潮| 亚洲人人妻人人爽av| 精品国产尤物黑料在线观看| 日韩av在线播放免费观看| 在线观看性生活免费看| 日韩情色电影中文字幕| 无码精品人妻一区人妻斩| 亚洲精品九一国产九九蜜桃| 国产爽又爽视频在线观看| 色偷拍亚洲偷自拍视频| 在线免费观看日韩av| av精彩天堂在线观看| 国产无遮挡又黄又爽又大| 国自产精品手机在线观看视| 国产视频三区二区在线观看| 啊用力快点我高潮了视频| 国产传媒第一页在线观看| 男生大肉捧插女生的视频| 日韩天堂视频在线播放| 日本人妻在线播放一区| 情色中文字幕在线观看| 色婷婷综合五月在线观看| 老頭搡老女人毛片視頻在錢看| 无遮挡18禁啪啪羞羞漫画| 老司机永久在线免费看视频| 日韩一区二区三区免费视频| 亚洲一区二区天堂在线| 久久香蕉免费国产天天看| 水蜜桃美女对机机小骚逼| 男人添嫩p视频在线观看| 久久久久久无码精品大片| 久久综合九色综合色多多| 男人机巴操女人骚穴视频| 精品人妻伦九区久久69| 99久久婷婷国产综合精品免费 | 香港三日本三韩国三欧美三级| 国产黄色污一区二区三区| 欧美日韩一级二级三区高清视频| 不卡久久精品国产亚洲av不卡| 色综合色综合色综合天天上班| 久久999国产高清精品| 日本欧美高清乱码一区二区 | 无码a级毛片免費视频内谢| 亚洲欧美在线视频第一区第二区| 99国产精品九九视频免费看| 中文字幕在线av电影| 美女av一区二区三区| 在线播放国产精品自拍| 手机免费av片在线观看| 欧美黄色成人在线电影| 北海莫菲尔国际精品酒店| 中文字幕一区二区三区乱码| 日日噜噜噜夜夜噜噜噜| 大鸡巴不停抽插双插喷水漫画视频| 久久综合亚洲一二三区| 黄色视频一边摸上面一边插下面 | 日本熟妇的诱惑中文字幕| 免费99精品国产自在现线丫 | 亚洲精品美女在线观看播放| 午夜免费福利视频一区| 隔壁人妻欲求不满中文字幕| 亚洲一区国产午夜福利| 少妇又白又紧又爽免费视频| 丁香婷婷激情综合俺也去| 菠萝菠萝蜜在线视频在线播放| 亚洲成人av免费在线看| 成人日韩精品在线观看| 久久免费视频久久免费视频99| 大陆猛男大鸡巴操骚美女骚逼视频 | 久久精品久久精品伊人69| 国产精品熟女自拍视频| 日本黄色一区二区三区| 男生把坤坤戳进女生阴道里的视频| 国产亚洲精品免费专线视频| 男人把鸡鸡捅进美女屁骨里| 男人大丁丁射精AV汇编| 青青草99久久这里只有精品| 国产精品一区二区三区欧美| 91福利免费体验区试看藏经阁| 97精品日韩欧美一区二区三区 | 无码系列久久久人妻无码系列| 青春无码三级视频在线播放| 啊啊啊好舒服不要再插了要高潮了| 9久热久re爱免费精品视频| 国产天堂av在线免费观看| 大大大长屌姓交口交观看| 女优日本中文字幕五十| 亚洲熟妇v一区二区三区色堂| 美女扒开屁股让男人桶大奶子骚逼| 日韩AV在线一区二区三区合集| 欧美成人午夜福利影院| 久久精品人妻少妇区二区| 大大大长屌姓交口交观看| 国产精品无码免费一级毛住a| 国产中文字幕在线免费观看| 国内精品久久久久久一区二区| 亚洲和欧美一区二区三区| 亚洲精品一区二区成人精品网站| 亚洲AV永久无码精品蜜芽| 久久精品中文字幕一二三| 人妻熟女一区二区aⅴ在线视频| 久久精品国产三级电影| 日本特黄特黄录像在线| 大鸡巴插进小骚逼漫画羞羞漫画| 欧美激情网页一区三区| 情产国品久久久久久久9999| 夜夜爽狠狠天天婷婷五月| 夜夜爽狠狠天天婷婷五月| 国产郑州性生活免费| 大奶女人被操逼操的崩溃| 四虎永久在线精品视频观看| 国产一级性生活片免费观看| 美女被黑人鸡巴草的爱液狂溅| 久久久人妻国产精品一区| 国产亚洲一区二区三区精品久久| MM1313亚洲精品无码久久| 日本精品福利在线视频| 凹凸国产在线观看高清画质| 五月天丁香花婷婷狠狠热| 亚洲一区国产午夜福利| 国产午夜精品一区二区三区视频| 精品国精品国产av自在久国产| 欧美一区二区三区最新| 欧美亚洲精品激情视频网| 日日摸夜夜添夜夜添日韩| 美日韩成人av免费久久| 我要大鸡吧在线观看免费 | 好好热精品视频在线观看| 国产精品系列在线播放| 国产又猛又黄又爽无遮挡| 中文字幕有码视频推荐| 国产一区二区三区二区| 国产精品无码久久综合网| 国产精品久久久久久精三级| 蜜桃久久精品一区二区| 亲少妇摸少妇和少妇啪啪| 中文字幕有码视频推荐| 亚洲国产日本韩国福利在线观看 | 91中文字幕在线永久| 亚洲最大色视频在线观看| 四虎永久在线精品视频观看| 久久精品国产亚洲av护士长| 蜜桃99视频在线观看| 欧美二精品二区免费看| 日韩精品无乱一区二区| 东北人妻丰满熟妇av无码区| 玖玖资源网站最新网站| 91综合在线国产精品| 国产免费人成视频尤物| 国产乱码精品一区二区三区播放| 大鸡吧操我纸牌视频啊啊啊| 国产福利精品蜜臀91啪| 国产在线小视频免费观看| 欧美三级视频一区二区三区| 人妻久久久一区二区三区视频| 亚洲国产av一区二区三区| 国产精品一区二区亚洲推荐| 中文字幕人妻高清乱码| 国产精品大片在线播放| 加勒比一道本在线观看 | 好爽好硬进去了好紧视频| 日韩 国产 精品 亚洲 欧美| 精品国产一区二区三区卡| 在线观看永久免费黄色| 91精品久久午夜大片| 久久精品成人无码观看56| 蜜桃一区二区三区在线| 正在播放女子高潮大叫要| 午夜av成人在线观看| 大鸡巴插入少妇骚穴视频| 日韩黄片毛片在线观看| 大鸡巴插入少妇骚穴视频| 天天久久狠狠伊人第一麻豆 | 91男厕偷拍男厕偷拍高清| 男生使劲操女生下面视频国产| 国产高清视频一区二区| 精品欧美激情一区二区三区 | 七月婷婷精品视频在线观看| 91出品视频在线观看| 91人人妻人人澡人人爽秒播| 麻豆精品人妻一区二区三区99 | 51短视频精品全部免费| 中文字幕中文有码在线| 菠萝菠萝蜜在线视频在线播放| 欧美日韩中文精品在线| 无码不卡免费中文字幕在线视频| 国产中文成人精品久久久| 成人精品一区二区三区不卡| 99爱在线精品视频免费观看9| 我要看外国女生操逼逼的视频| 天堂av一二三区在线播放| 美艳人妻办公室抽搐呻吟| 美日韩精品一区三区二区| 成年美女黄网站大片免费| 日韩精品av在线观看| 色哟哟一区二区三区四区视频| 97视频精品免费观看| 国产极品尤物内射在线| 天天操亚洲精品日韩欧美| 日本成年人大片免费观看| 欧美三级经典影片视频| 久久综合九色综合本道| 自拍偷在线精品自拍偷蜜臀| 亚洲日本精品熟女视频| 亚洲无线码中文字幕在线 | 亚洲AV无码一区二区三区动漫| 一卡二卡精品在线免费| 精品色欲久久久青青青人人爽| 中国一级全黄的免费观看| 男人添嫩p视频在线观看| 人人妻人人爽人人澡av毛片| 欧美国产大片一区视频| 中文字幕乱码熟女人妻| 深夜福利一区二区三区欧美| 我要看国产的日逼的视频| 男人抚摸亚洲女大学生的大胸| 日本视频一区二区三区观看| 色综合人妻中文字幕精品系列| 亚洲av日韩av天堂无码| 国产极品尤物内射在线| 亚洲精品偷拍自综合网| 亚洲国产欧美日韩各类| 国产鲜肉帅哥大鸡巴操美女逼内射 | 国产性色av一区二区| 好吊妞一样的免费视频| 亚洲一级特黄大片婷婷| 抖阴视频啊啊啊好舒服大鸡吧| 国产欧美精品一区二区性色| 波兰中年妇女B操B视频| 亚洲和欧美一区二区三区| 国产中文成人精品久久久| 久久综合中文字幕一区二区| 美国女人大兵的大鸡巴操男人的逼 | 亚洲中文在线视频观看| 91青青草原免费观看| 国内综合视频一区二区三区| 看操小日本女人乱伦逼视频| 日韩 有码 中文字幕 在线| 香蕉成人伊视频在线观看| 五月婷婷久久综合激情| 欧美激情日韩精品久久久| 国产精品大片在线播放| 黄色三级三级三级免费观看| 国产精品一区二区亚洲推荐| 国产夫妻自拍刺激视频在线播放| 精品国产尤物黑料在线观看 | 在线观看一区二区三区亚洲| 99国产精品久久久久久| 国产精品无码久久综合网| 成人一区二区三区在线观看| 香蕉久久夜色精品国产不卡| 综合亚洲欧美一区二区三区| 九九热最新免费在线观看| 精品久久只有精品做人人| 亚洲国产欧洲综合997| av日韩免费在线观看| 极品美女高潮精品16p| 99国产精品黄色片子| 午夜福利十八周岁成人| 国产欧美精品久久99亚洲| 国产综合亚洲欧美日韩在线| 久久人妻久久人妻涩爱 | 欧美a级黄色中文字幕手机在线| 国产综合色在线视频观看| 少妇厨房愉情理伦片视频在线观看| 中文无字幕一区二区三区| 成年美女黄网站大片免费| 骑乘少妇喷水高潮69av| 国产美女极度色诱视频| 97碰碰车成人免费视频| 风韵丰满熟妇啪啪老熟女| 欧美性生活欧美性生活| 男人的天堂社区东京热| 亚洲高清在线精品一区二区| 大肉棒猛插小逼太爽了视频 | 亚洲精品一区二区三区小| 久久免费亚洲免费视频| 日产乱码一二三区别免费| 男人把女人捅到爽爆免费视频| 少妇中出中文字幕久久久| 国产精品久久久久婷婷五月| 9久热久re爱免费精品视频| 无码国内精品人妻少妇蜜桃视频| 春色校园激情综合另类| 亚洲日本乱码一区二区| 抖阴视频啊啊啊好舒服大鸡吧| 国产内射一级一片高清视频蘑菇| 精品人妻伦九区久久69| 欧美激情视频一区 二区| 淫荡骚货想让我射进她的骚穴视频| 好好热精品视频在线观看| 中文字幕乱码熟女人妻| 亚洲国产不卡av在线| 美国女人大兵的大鸡巴操男人的逼| 久久精品国产91麻豆| 国产爽又爽视频在线观看| 日本在线观看高清区一区二| 国产免费成人在线观看视频| 成人欧美一区二区三区1314| 日韩一区二区三区免费视频 | 亚洲国产精品成av人| 想看操真人老女人逼的视频| 麻豆回家视频区一区二| 最新av国产在线播放| av网站在线观看亚洲国产| 国产精品无码久久综合网 | 亚洲无线码中文字幕在线| 强奷漂亮的夫上司犯在线观看| 国产午夜精品一区理论片| 精品一区二区日本视频| 公侵犯人妻中文字幕一区| 国内精品久久久久久一区二区| 久久久精品国产精品久久| 成年人午夜黄片视频资源| 综合激情五月三开心五月| 可以在线观看的黄色av| 亚洲无线码中文字幕在线| 久久这里只有视频精品| 麻豆国产成人AV高清在线观看| 久久久久久无码精品大片| 中文字幕av无码不卡二区| 久久亚洲出白浆无码国产| 国产超碰天天爽天天做天天添| 操小逼流白浆日韩免费小视频| 亚洲高清在线精品一区二区 | 亚洲熟女乱一区二区精品成人| 国产精品91福利一区二区三区| 视频一区视频二区同事| 91精品人妻一区二区蜜桃| 91中文字幕在线永久| 日韩av不卡在线播放| 亚洲av人片乱码色午夜| 淫荡小骚逼想要大肉棒视频| 蜜桃免费视频在这里看| 国产亚洲综合一区二区| 久久婷婷好好热日本手机| 少妇 特黄一区二区三区| 人妻在线有码中文字幕| 麻豆成人久久精品二区三区红| 大鸡吧插没毛的骚逼诱惑视频| 色哟哟一区二区三区四区视频 | 极品人妻手机视频在线| 国产三级精品在线不卡| 蜜臀视频免费国产在线视频| 亚洲日本乱码一区二区| 男人鸡巴插进女人B里的视频| 国产一区日韩精品二区| 美女扒开双腿被捅的视频| 999国产精品永久免费视频| 老頭搡老女人毛片視頻在錢看| 日韩女优日逼视频粉嫩开包| 国产熟女一区二区三区四区| 在线日韩一区二区三区不卡| 亚洲国产欧美日韩各类| 亚洲国产av一区二区三区| 91精品国自产拍老熟女露脸| 美日韩一级片欧美一级片| 热99RE久久精品这里都是精品| 日本是全亚洲最发达的国家| 欲求不满人妻av中文字幕| 中文字幕日本人妻束缚视频| 国产一区二区三区粉穴| 国产成人精品自产拍在线观看| 成人日韩精品在线观看| 大鸡巴厂长狂操女人的无毛小逼| 高颜值午夜福利在线观看| 好爽好硬进去了好紧视频| 九九在线精品亚洲国产涩爱| 色综合久久久久久久激情| 久久人妻久久人妻涩爱 | 边吃奶边摸下我好爽免费视频| 午夜韩国理论片在线观看| 日本高清视频不卡一区二区| 男女激情视频网站免费在线| 91精品国产美女福到在线不卡| 强插少妇视频一区二区三区| 少妇厨房愉情理伦片视频在线观看 | 女自慰喷水大学生高清免费看| 国产草莓视频无码a在线观看| 91精品国产福利在线观看你| 久久精品免视看国产成人| 国产午夜福利在线观看红色一片天| av永久网站在线观看| 中文字幕中文有码在线| 老女人黄色性生活高清版| 操爆白皙美女下面的骚逼视频| 大陆猛男大鸡巴操骚美女骚逼视频 | 91中文字幕国产精品| 国产欧美精品久久99亚洲 | 在线不卡视频国产观看| 中文人妻av一区二区| 日本人体精品一区二区三区视频 | 免费无码va一区二区三| 性夜国产夜春夜夜爽三级| 伊人久久大香线蕉亚洲av| 日韩欧美三级影片在线观看| 91精品极品在线免费观看| 啊用大鸡巴操骚逼逼视频| 91成人精品国产免费男男| 淫妇小穴好爽啊出水视频| 黄色顶级男和女性视频毛视频| 丁香花在线视频观看免费| 女同互玩中文字幕久久| 韩国床震无遮挡免费视频| 男人用力插美女下面的视频| 欧美成人午夜福利影院| 日韩欧美亚洲国产精品幕久久久| 午夜宅男在线视频观看| 国产麻豆剧传媒免费观看| 九九热6这里只有精品视频| 久久免费看美女高潮视频 | 国产精品为爱搞点激情| 思思99热这里只有精品| 黄色国产精品视频入口| 男人和女人插插视频免费看 | 亚洲AV元码天堂一区二区三区| 久久精品久久精品伊人69| 一级国产片在线观看免费| 国产裸体美女永久免费无遮挡| 日本视频一区二区免费在线观看| 欧美乱妇高清无乱码亚洲欧美| 男人的天堂一级毛片视频| 国产精品区第二页尤自在拍| 超碰插你激情免费在线| 可以免费看的欧美黄片| 亚洲黄色成人av在线电影| 色偷拍亚洲偷自拍视频| 淫荡骚货想让我射进她的骚穴视频 | 成人福利在线免费观看视频| 国产美女91精品在线观看| 欧洲老太太肛交内射视频| 亲少妇摸少妇和少妇啪啪| 自拍日韩亚洲一区在线| 中文字幕中文有码在线| 免费日韩av网在线观看| 17岁日本免费完整版观看| 国产内射一级一片高清视频蘑菇| 欧美精品久久久天堂一区| 夫目中文字幕一区二区|