操逼啊口爆啊rrr中途啊免费-中文字幕av网一区二区-中文字幕久久精品波多野结百度-国产三级视频在线观看

雙極性晶體管

二極管

ESD保護(hù)、TVS、濾波和信號(hào)調(diào)節(jié)ESD保護(hù)

MOSFET

氮化鎵場(chǎng)效應(yīng)晶體管(GaN FET)

絕緣柵雙極晶體管(IGBTs)

模擬和邏輯IC

汽車應(yīng)用認(rèn)證產(chǎn)品(AEC-Q100/Q101)

IAN50006 - Power MOSFETs in linear mode

This interactive application note contains simulations to aid understanding of MOSFET linear mode operation and thermal instability while applying SOA temperature derating methods to design more robust and reliable circuits.

Author: Christian Radici, Applications Engineer, Manchester.

This interactive application note contains embedded Cloud based simulations to augment the text.

To open the embedded simulation, simply hover over the simulation image. Left click anywhere in the graphic area once the central play button changes in colour. This opens the schematic in the Cloud environment. See the interactive application note tutorial page for more details on how to use the simulations. See accompanying application note: AN50006.

Download AN50006

Introduction

Power MOSFETs are extensively used as switches due to the very low RDSon and thus low conduction losses. However, in many applications MOSFETs are used in their saturated state, with certain cases requiring both these modes to be robust and performant within the same device.

This interactive application note aims to describe the main characteristics of linear mode operation from a theoretical standpoint. Nevertheless, application-oriented topics are discussed in case of HotSOA derating and pulse shape conversion. Example simulations are included in the relative paragraphs.

[1] RDSon operation trajectory; [2] linear mode operation trajectory
Figure 1. Example of MOSFET output characteristic ON/OFF trajectories

Linear mode definition

During linear mode a MOSFET operates in its saturated state, or saturation region, and it behaves as a (gate) voltage controlled current source. Contrary to what happens when fully ON (or fully enhanced), the drain-source impedance is relatively high, resulting in high power dissipation. In linear mode, the power is given by the product of the drain current and the drain-source voltage (ID × VDS), which are both high at the same time.

Linear mode can be described analytically by the set of equations below. The MOSFET needs to be ON (Equation 1) and the VDS greater than the overdrive voltage (VOD) (Equation 2). If the previous two conditions are met the drain current will be proportional to the square of VOD (thus the applied VGS) as shown in Equation 3, where k is a technological parameter fixed with the type of trench technology used.

(Eq. 1)  

(Eq. 2)  

(Eq. 3)  

MOSFETs can operate in linear mode in two ways: indirectly, for a short time, as a consequence of switching or directly, for much longer time. In fact, linear mode is traversed every time a MOSFET switches ON and OFF. With reference to Fig. 1, during turn ON the MOSFET’s working point moves from high VDS and zero ID (OFF state) to a low VDS and high ID (curve 1). Certain applications require MOSFETs to purposely operate in linear mode (curve 2). In this case it is recommended to:

  • Guarantee that the device operates within the SOA curve, for a given pulse duration and mounting base temperature (Tmb)
  • Employ adequate thermal management techniques.

Examples of typical linear mode applications

Simulation 1 - Airbag applications

Simulation 1 - Airbag applications

Simulation 2 - Active clamp

Simulation 2 - Active clamp

Simulation 3 - Capacitor pre-charge (soft start / hot swap)

Simulation 3 - Soft start

Simulation 4 - LDO (low dropout) regulators

Simulation 4 - LDO regulator

SOA graph

The safe operating area (SOA) graph gives an indication of the amount of power a device can safely handle before failing. The graph shows the drain current plotted against the drain-source voltage. The limit depends on the time duration of the power and the working region the MOSFET operates in. The graph is valid only for a constant mounting base temperature of 25 ?C and either a single pulse or DC operation. The SOA is especially useful in case of linear mode operation. Fig. 2 shows the area below which a MOSFET can safely and reliably operate for a pulse of 1 ms and the limit at VDS = 3 V and pulse of 1 ms.

Figure 2. SOA maximum current limits for 1 ms and at VDS = 3 V and 1 ms pulse

Fig. 3 shows how the SOA graph can be subdivided depending on the MOSFET’s working region (a time pulse of 1 ms is considered).

  • The yellow line corresponds to the limit in RDSon mode
  • The green line indicates the limit imposed by the package
  • The blue line shows the avalanche limit (at the maximum rated voltage, before avalanche occurs).
  • The red line shows the limit during linear mode operation. This limit is verified experimentally by keeping VDS constant while the current is pulsed for a given duration. As shown in Equation 4, it depends on the thermal impedance of the MOSFET (Zth), maximum junction temperature (Tj(max) = 175 ?C) and mounting base temperature (Tmb).

For a more in-depth description of the SOA limits see AN11158 Understanding power MOSFET data sheet parameters (3.1 Safe Operating Area (SOA) curves).

(Eq. 4) 

  

Figure 3. SOA graph; curve limits

From Equation 4 it follows that the limit increases (more power can be dissipated) as the time pulse decreases. Finally, the dashed red line indicates the Spirito region, where thermal instability occurs.

Figure 4. Transfer characteristics showing regions of positive and negative temperature coefficient

Temperature dependency

Thermal instability

For a fixed VDS, the variation of drain current against gate bias voltage is plotted in the transfer characteristic graph, shown in Fig. 4. Two lines are used to show the MOSFET operation at a junction temperature of 25 °C (solid line) and 175 °C (dashed line). For a low enough VGS, the MOSFET will conduct more current if it operates at 175 °C than at 25 °C, due to the negative temperature coefficient of the threshold voltage (VGSth), as shown in Fig. 5. In this case the MOSFET is operating in a region of thermal instability, identified by a positive temperature coefficient of the current. This holds true even when considering a single spot on the silicon die [1].

However, this phenomenon can be avoided. In fact, for a given VDS, there is a critical current above which there is a negative feedback and thus thermal stability. This is known as the Zero Temperature Coefficient (ZTC) point.

Figure 5. Gate-source threshold voltage as a function of junction temperature

On the SOA graph, thermal instability is indicated by a two-slopes line and an additional inflexion point, as shown in Fig. 6 (the inflexion point is located at 5 V for a 1 ms pulse). The theoretical limit, in the dashed blue line, is calculated using Equation 4, where Zth = Zth(j-mb). This limit can be found using an RC thermal model, like the Cauer model shown in Fig. 7. The dashed red line indicates the real performance of the device. In this case Zth ≠ Zth(j-mb) and therefore the limit cannot be found using an electrical model. The reduction in performance can be quite severe: in this case for a VDS of 20 V, the maximum current the MOSFET can handle goes from a theoretical 60 A down to around 15 A (75% less). This phenomenon is also known as Spirito effect, and it is  caused by the uneven distribution of current across the silicon die. Below the ZTC point, if a small region is at a higher temperature than the rest of the die, it will draw more current and dissipate more power becoming even hotter. This process eventually leads to thermal runaway and the destruction of the MOSFET as a three-terminal short. Burn marks will appear near the center of the die and close to the die bonding structure, as documented in AN11243 Failure signature of electrical overstress on power MOSFETs (1.3 Linear mode operation).

Figure 6. SOA graph: Spirito effect

Figure 7. Cauer RC thermal model

Moreover, these hotspots are observed to occur more frequently at wider power pulses.

With reference to Fig. 6, for a time pulse of 10 ms the Spirito effect takes place at a lower VDS (around 3 V) than for the 1 ms pulse (5 V) while DC operation is limited by thermal instability at any voltage.

The uneven distribution of current across the silicon die is influenced by uniformity of the MOSFET cells and integrity and uniformity of the die attachment. Besides, the type of die bonding technology can also have a significant impact. As shown in Fig. 8, wire bonding increases current density in small points of the die that can become hot spots. On the other hand, the copper clip of an LFPAK prevents localised current crowding reducing the likelihood of hot spot formation.

Figure 8. Current crowding contours for a) LFPAK88 and b) D2PAK packages
Note: current density contour scaling is different for LFPAK88 and D2PAK, see accompanying colour scaling

Also, cell density influences the shape of the SOA. Older trench (or planar) technologies show a higher RDSon, due to the wider cell pitch and thus lower cell density. For a given total drain current, cells in older technologies are more likely to operate beyond the ZTC point, where operation is thermally stable, since the current per cell is higher. Consequently, for a given die size, older trench (or planar) technologies show a higher RDSon but in turn perform better in linear mode.
The innovation introduced with new trench structures has deeply increased performances in some of the other fields, particularly in switching, avalanche and steady state behavior. Newer technologies show generally worse linear mode capability, however, whenever harder requirements have to be met the designer can either choose (in case the thermal design cannot be improved): a MOSFET with a lower Rth(j-mb) (corresponding to a bigger die), a bigger package, an older technology (with lower cell density) or a MOSFET from Nexperia’s ASFET portfolio with Enhanced SOA capability.

5.2. Hot-SOA derating

The SOA graph in Nexperia’s data sheets is valid only for a mounting base temperature of 25 °C. If the mounting base is held at a different temperature, then the graph must be derated, as generally the capability at other temperatures is not characterized. In this case, either an approximated or an exact indication of the new limit is found, depending on the device’s working region.

There are three main derating methods depending on which quantity is scaled or kept constant. If the current is scaled, then the voltage will remain constant, vice versa if the voltage is scaled, the current will remain constant. The third option is to scale both voltage and current thus keeping the power constant. The RDSon, package, breakdown and linear mode limits are all predicted in the same way by these methods. The only difference is in how the Spirito region is approximated, i.e. the position of the inflexion point. For a given VDS the current scaling method returns the highest limit, while the voltage scaling the lowest. Generally, when compared with a measured Hot-SOA every method is observed to underestimate the device’s real performance, which gives some safety margin from thermal instability. As shown in Fig. 9 the current scaling method usually gives the best Spirito approximation.

Figure 9. Example of SOA derating methods against measurement for the BUK7Y2R0-40H

Figure 10. Normalized total power dissipation as a function of mounting base temperature: power scale factor

Table 1 summarizes the current limits predicted using the three methods and measurement at VDS = 30 V, Tmb = 125 °C and pulse of 1 ms.

Table 1. Scaling methods against measured data
ID limit: VDS = 30 V; Tmb = 125 ?C; pulse width = 1 ms
Measured Current scaling Voltage scaling Power scaling
4 A 1.5 A 1 A 0.4 A

Before applying any of these methods, the power scale factor (kPSF) must be calculated. This can be obtained by looking at the plot in Fig. 10, or using Equation 5. The graph is given in any Nexperia’s data sheet and represents the normalized power dissipation as a function of mounting base temperature. Due to its double scaling, the power scaling method make use of a different coefficient calculated using Equation 6.

(Eq. 5) 

(Eq. 6)  

Figure 11. Data sheet SOA: current limit for Tmb = 25 °C

As an example, a MOSFET’s current limit is calculated using the current scaling method for: Tmb = 100 °C, VDS = 3 V and a pulse width of 1 ms

  1. The current limit at Tmb = 25 °C is 400 A, as shown in Fig. 11
  2. kPSF is calculated using Equation 5 and is exactly 0.5 (i.e. 50%)
  3. The new limit at Tmb = 100°C is 200 A, as calculated using Equation 7. 

(Eq. 7)  

Figure 12. Derated SOA limits for Tmb = 100 ?C and pulse of 1 ms, using current scaling method

The complete Hot-SOA graph can be found by taking the following steps (current scaling method is used but this can be adapted to the other methods):

  • The RDSon limit is not derated since it is calculated using RDSon at 175 °C
  • Linear mode inflexion point and breakdown limit are shifted downwards, the new current limits are found using the power scale factor (in this case 0.5). A new inflexion point for the Spirito region is generated at half the current of the original one
  • Finally, the lines can be extended to the endpoints using the same slope.
Power_shape_conversion_triangular_pulse
Figure 13. Power shape conversion of triangular pulse with MOSFET operating outside the Spirito region

SOA: pulse shape conversion

In certain applications the power may not be a rectangular pulse, or the duration may be different from the set given in the SOA graph. In both cases a power shape conversion can be carried out and operation within SOA verified. This conversion is exact if the MOSFET is operating in ohmic mode or linear mode. However, it might be inaccurate for operation in the Spirito region.

If the MOSFET is not working in Spirito region, the pulse can be converted into a rectangular one carrying the same amount of energy, by adjusting either the duration or the peak. Fig. 13 shows the conversion for a triangular power pulse. If the pulse duration is not part of the SOA graph, the limit can be calculated using the value of thermal impedance found in the data sheet (or an RC thermal model) and Equation 4. The use of thermal and electrothermal models is always recommended to accurately predict the junction temperature.

If the device is working in Spirito region, the pulse cannot be converted by means of the thermal impedance. In this case, the use of thermal and electrothermal models gives only an average junction temperature, which doesn’t reflect hot spots’ temperature. A conservative approach would be to consider a rectangular pulse with the same peak and duration of the original one. However, empirical evidence would suggest that triangular pulses can be converted into rectangular ones having same duration but half the peak value. Testing has been conducted using the BUK7S1R0-40H and the active clamp circuit shown in simulation 2. It is worth noting that these results should be considered valid only for this specific device.

Figure 14.??MOSFET VDS and ID during active clamp

Active clamping is used in inductive switching, similarly to avalanche, however the device operates in linear mode at a lower clamping voltage than in avalanche. With switch sw1 on the closed position and MOSFET M1 turned ON, current can flow through the main circuit. Once the inductor is “charged” the MOSFET is switched OFF. The energy stored in the inductor induces a high voltage that breaks down the Zener diode ZD1. This, in turn, clamps the gate voltage turning ON the MOSFET, which absorbs the energy released by the inductor. During this last activation the MOSFET is working in linear mode, the VDS is fairly constant while its drain current decreases, as shown in Fig. 14 (simulated). Therefore, the dissipated power is a triangular pulse lasting 1 ms.

 

 

(1) IAL; (2) VCL = 20 V; (3) VCL = 22 V; (4) VCL = 28 V
Figure 15. Current versus time capability of avalanche and active clamp of BUK7S1R0-40H

The circuit is used to test the BUK7S1R0-40H at VDS of 20 V, 22 V and 28 V. The limit is obtained by derating the current at which destruction occurs by applying the same methodology used for the SOA in data sheets. Fig. 15 shows the current capability against time in avalanche (IAL) and during active clamp at different clamping voltages. Table 2 summarises the results from the graph at a pulse of 1 ms. The current capability for a triangular pulse is shown to be around 2x the one for a rectangular pulse. The current decreases as the voltage increases, as expected in case of rectangular pulses.

Table 2. BUK7S1R0-40H: triangular and rectangular pulse capability
Voltage 1 ms active clamp
current (A)
1 ms SOA (data sheet)
current (A)
20 35 16
22 31 14
28 15 8

The same principle applies to capacitive pre-charge, where the MOSFET dissipates a triangular power pulse. However, in this case the ID is constant and VDS decreases. The reducing voltage leads the working point to move towards the left of the SOA graph away from the Spirito region, with lower risks of thermal instability with respect to active clamp.

Summary

In this interactive application note an overview of power MOSFETs linear mode operation has been presented. Together with embedded simulations a brief theoretical introduction highlighting the main differences with RDSon mode, the link between linear mode and SOA have been described. This includes thermal instability (Spirito region), Hot-SOA derating methods and pulse shape conversion.

Reference

1 Electro-thermal instability in low voltage power MOS: Experimental characterization - IEEE; G. Breglio, F. Frisina, A. Magri, P. Spirito

Page last updated 09 May 2022.
日本东京热av在线观看| 啊啊啊逼逼好痒啊啊视频| 国产黄色污一区二区三区| 日本高清少妇一区二区三区 | 97国产精品97久久| 91九色视频在线观看| 日韩欧美人妻之中文字幕| 毛片内射一区二区三区| 欧美美女真人全裸外阴大阴口日逼| 中文字幕在线av电影| 国产激情一区二区激情| 亚洲av天堂在线免费观看| 国产麻豆剧传媒免费观看| 最近中文字幕国产精品| 亚洲狠狠丁香综合一区| 国语成人高清在线观看| 无遮挡18禁啪啪羞羞漫画| 色综合久久久久久久激情| 97精品视频在线观看| av日韩免费在线观看| 久久精品国产在热亚洲| 国产在线精品免费播放| 成人两性生活免费视频| 国产在线精品一区二区三区不| 五十老熟女高潮嗷嗷叫| 黑人精品一区二区三区av| 国产一区二区最新在线| 水蜜桃在线精品视频网| 大屁股迷人少妇在线观看| 国产一区二区四区在线观看视频| 国内揄拍国内精品少妇国语麻豆| 热99RE久久精品这里都是精品 | 国产精品区第二页尤自在拍| 免费国产高清在线观看最新| 天堂丝袜人妻中文字幕在线| 欧美日韩亚洲一区二区在线| 一区二区三区毛片国产一区| 国产在线精品免费播放| 男人机巴操女人骚穴视频| 在线人妻无码中文dvd视频| 久久香蕉国产线看观看6| 亚洲av永久无码青青草原| 午夜亚洲精品中文字幕| 精品国精品国产av自在久国产| 亚洲av人片乱码色午夜| 情色中文字幕在线观看| 日韩天堂视频在线播放| 东北人妻丰满熟妇av无码区| 欧美美女真人全裸外阴大阴口日逼 | 国产美女91精品在线观看| 美女被大鸡巴插男内射欧美 | 97精品伊人久久大香| 男人用鸡巴插女人视频下载| 中文字幕亚洲精品激情欧美| 大肉棒猛插小逼太爽了视频| 色综合人妻中文字幕精品系列| 在线人妻无码中文dvd视频 | 好爽好硬进去了好紧视频| 99国产精品亚洲一区二区三区| 国产欧美成人精品一区二区| 又嫩又硬又黄又爽的视频| 91精品麻豆日日躁夜夜躁| 中文av岛国无码免费播放| 欧美一区二区三区播放| 美日韩精品一区三区二区| 免费观看黄色a一级录像| 外国的大鸡巴操美女骚逼| 成人免费淫片在线观看免费| 国产免费内射又粗又爽密桃视频| 欧美久久国产精品性夜春夜夜爽| 国产亚洲一区二区三区精品久久| 亚洲大尺度无码无码专线一区 | 精品日韩av在线免费观看| 精品色欲久久久青青青人人爽| 中文字幕人妻少妇久久| 欧美亚洲精品激情视频网| 把体操服美女摁在桌上操| 日韩欧美一级特黄大片| 国产最新视频一区二区三区| 波多野结衣在线观看一区二区三区 | 激情伊人五月天久久综合| 国产欧美又粗又长又爽| 野花视频在线观看免费高清版| 97激情在线视频五月天视频| 五月婷婷在线直播视频免费观看| 中文字幕中文有码在线| 91福利国产在线人成观看| 男生把小鸡鸡插到女生阴巢的视频| 92午夜福利在线视频| 伊人2222成人综合网| 另类艳情双性人妖视频网站| 国产成人欧美一区二区三区的| 在线观看免费完整版日本| 国产精品久久久久久妇女免费| 人妻熟女一区二区aⅴ在线视频| 中国一级做a爰片久久毛片| 操逼激情破处大鸡吧插进| 91午夜精品福利在线亚洲| 综合色欲久久精99999| 国产黄片一级二级三级| 欧洲亚洲综合一区二区三区| 青青青在线视频免费播放| 国产福利一区二区三区| 欧洲中文字幕日韩精品成人| 中文字幕 乱码 中文乱码视频| 自由成熟性生活免费视频| 九九在线精品亚洲国产涩爱| 中国一级毛片免费看视频| 欧美精品国产成人综合亚洲| 欧美日韩亚洲一区二区在线| 国产亚洲精品成人av一区| 不卡av免费在线网址| 国产男女高清视频在线| 国产99久久精品一区二区300| 午夜福利观看在线观看| 国产精品大片在线播放| 91精品综合国产蜜臀久| 男人的天堂社区东京热| 17岁日本免费完整版观看| 亚洲欧洲国产精品香蕉网| 国产av自拍日韩高av| 北海莫菲尔国际精品酒店| 在线观看性生活免费看| 强d乱码中文字幕熟女免费| 玖玖资源网站最新网站| 俄罗斯美女扒开B口B毛男人玩吗| 国产av人人夜夜澡人人爽软件| 四房色播五月天婷婷丁香| 久久精品国产99久久久| 亚洲国产精品毛片av在线下载| 亚洲国产日韩欧美综合在线| 天天摸天天做天天爽婷婷| 免费观看又色又爽又黄的| 国产 中文字幕 欧美 日韩| 亚洲精品精品日本日本| 欧美日高清视频在线观看| 欧美亚洲区一区二区三区| 国内精品国产成人国产三级| 两个奶头被吃高潮视频免费版| 日产乱码一二三区别免费| 深夜福利av在线播放| 又嫩又硬又黄又爽的视频| 97碰碰车成人免费视频| 久久这里只要精品视频 | 99久久午夜精品一区二区欧美| 又色又爽又黄的视频大全| 精品日韩av在线免费观看| 在线观看亚洲欧洲精品| 小伙子狂暴大奶子美女逼| 美女无套内射粉嫩99内射| 精品日韩一区二区三区| 国产麻豆剧传媒免费观看| 在线日韩人妻高清在线| 色帝国综合综社区偷拍| 精品人妻一区二区三区mp4| 色偷偷人人澡久久超碰91蜜臀| 神马午夜伦理精品亚洲| 一区二区三区婷婷中文字幕| 一级a做片免费观看久久| 亚洲熟女乱一区二区精品成人| 精品久久久久久久大| av在线播放亚洲天堂| 亚洲欧美日韩偷拍丝袜| 国产高清视频一区二区| 超碰98人人插完整版在线观看| 禁止的爱善良的小中文在线bd| 久久精品久久精品伊人69| 91久久国产精品91久久性色| 国产男女高清视频在线| 久久久无码精品亚洲日韩18禁| 午夜福利观看在线观看| 成人免费淫片在线观看免费| 国产a级久久久精品视频| 国产欧美精品一区二区性色| 亚洲av日韩av高清在线播放| 又色又爽又黄的视频大全| 最近日本免费播放视频午夜| 国产男女高清视频在线| 久在线观看视频在线观看免费| 午夜福利观看在线观看| 国产综合色在线视频观看| 国产夫妻自拍刺激视频在线播放 | 男女激情视频网站免费在线 | 久久久久久精品国产一区| 亚洲日本精品熟女视频| 66mio人妻精品一区二区三区| 久久精品美国亚洲av伦理| 高潮颤抖大叫正在线播放| 久久精品国产欧美电影| 九九热视频大全精品免费| 在线蜜臀av中文字幕| 在线播放国产精品自拍| 日韩精品少妇专区人妻系列| 国产亲近乱来精品视频| 日韩一区二区三区免费视频| 不卡av免费在线网址| 成人国产激情自拍视频 | 国产在线观看黄av免费| 激情文学婷婷六月开心久久| 亚洲日本精品熟女视频| 亚洲日韩精品欧美一区二区三区| 亚洲精品一区二区三区小| 人妻熟女一区二区三区在线| 日本高清视频不卡一区二区 | 激情一区二区三区四区| 深夜欧美福利在线视频| 免费 无码 国产在线观| 在线蜜臀av中文字幕| 成年人午夜黄片视频资源| 国产亚洲精品成人av一区| 在线日韩AV免费永久观看| 国产精品一区二区大白腿| 成人公开无码免费DVD视频| 999久久久久国产精品麻豆| 成年女人喷潮毛片免费播放 | 久久a天堂av福利免费播放| 亚洲欧美另类丝袜在线| 七月婷婷精品视频在线观看| 四虎永久在线精品视频免费观看| 国内揄拍国内精品少妇国语麻豆| 色噜噜狠狠狠综合曰曰曰| 精品国产一区二区三区蜜殿最| 国产精品久久久久久久第一福利| 国产av自拍日韩高av| 搭讪人妻中文字幕系列| 99国产精品亚洲一区二区三区| 999久久久久国产精品麻豆| 国产日韩人av在线播放| 日韩毛片资源在线观看| 骑乘少妇喷水高潮69av| 亚洲熟妇熟女久久精品一区| 我要看国产的日逼的视频| 亚洲国产精品免费线观看| 亚洲狠狠丁香综合一区| 日韩欧美一级精品久久| 天天操夜夜一操免费看| 亚洲精品不卡一二三区| 四虎国产永久免费视频| 欧美激情网页一区三区| 日日摸夜夜添夜夜添日韩| 亚洲理论中文在线观看| 久久免费偷拍视频看看| 亚洲欧洲国产精品香蕉网| 男人用力插美女下面的视频| 亚洲av毛片免费观看| 国产精品人成在线播放| 亚洲欧美制服在线88p| 人妻在线有码中文字幕| 免费观看又色又爽又黄的| 日本大黄毛逼自拍视频| 成人国产激情自拍视频| 欧美一级久久久一区二区| 日本一区二区三区精品视频在线| 亚洲嫩模三级片中文字幕| 久久精品av免费观看| 亚洲黄片在线播放视频| 91九色成人在线观看| 在线人妻无码中文dvd视频| 久久久久伊人亚洲最大av综合| 91精品国产福利在线观看性色| 激情毛片av在线免费看| 91免费精品国产拍在线| 91中文字幕一区二区| 久久久无码精品亚洲日韩18禁| 91九色视频在线观看| 超碰插你激情免费在线| 看操小日本女人乱伦逼视频| 亚洲男人天堂在线免费| 久久亚洲精品成人在线| 货在沙发风骚至极 自摸肥逼勾引 又黄又爽有无遮挡的网站 | 日本高清视频不卡一区二区 | 无码不卡免费中文字幕在线视频| 91精品久久午夜大片| 国产自产拍午夜免费视频| 强d乱码中文字幕熟女免费| 国产精品国产三级国产av闹| 亚洲av精品一区在线| 97精品日韩欧美一区二区三区| 欧美日韩国产成人高清视频| 91精品麻豆日日躁夜夜躁| 欧洲日韩国产一区二区| 高颜值午夜福利在线观看| 亚洲大色堂人在线视频| 日韩黄片毛片在线观看| 亚洲高清在线精品一区二区| 精品久久国产蜜臀色欲69| 国产在线精品一区二区三区不| 91性高久久久久久久久久久| 久久精品国产欧美电影| 免费黄色国产精品日更| 一区二区三区激情在线观看 | 日韩欧美人妻之中文字幕| 国产诱惑站着操性感美女小穴视频 | 男女男精品视频免费体验| 人妻少妇被猛烈进入中出视频 | 精品日韩av在线免费观看| 99国产精品久久久久久| 久久久久久久久久久久新| 日韩中文字幕av电影| 日韩爱爱视频在线观看| 久久久久久久久久久久新| 日本一区二区三区女优在线| 禁止的爱善良的小中文在线bd| 97精品久久九九中文字幕| 日韩精品视频观看专区| 亚洲国产精品一区二区三区四区| 天堂av毛片免费在线看| 国产人成91精品免费观看| 亚洲精品美女在线观看播放| 啊啊啊啊啊啊啊啊操我啊啊啊免费 | 131美女爱做视频高清在线 | 最新推荐久久伊人久久久| 动态强干叉美女小穴视频| 男生操女生小逼爽爽爽看看| 水蜜桃在线精品视频网| 欧美成人动漫免费在线观看| 看操小日本女人乱伦逼视频| 亚洲一级特黄大片婷婷| 日韩一区二区三区东京热| 男人鸡巴插进女人B里的视频| 亚洲AV成人无码网天堂| 亚洲大陆免费在线视频| 亚洲国产欧美日韩各类| 亚洲综合色一区二区三区蜜臀| 视频一区精品中文字幕| 一区二区三区欧美影片| 在线观看免费完整版日本| 丰满人妻少妇被猛烈进入| 操爆白皙美女下面的骚逼视频| 加勒比一道本在线观看 | 色偷偷人人澡久久超碰91蜜臀| 97精品在线视频播放| 国产成人精品自产拍在线观看 | 免费观看又色又爽又黄的| 欧美熟妇另娄久久久久久| 绿奴舔屁眼哦哦哦操我啊哦哦哦 | 日韩av中有文字幕在线观看| 亚洲av情网站在线观看| 亚洲和欧洲一码二码区视频| 黑人精品一区二区三区av| 成年大片在线免费播放| 国产视频三区二区在线观看| 日韩在线观看免费av| 香蕉成人伊视频在线观看| 久久精品中文字幕人妻中文| 高清日韩中文字幕在线| 日韩欧美亚洲精品成人| 99久久无色码亚洲字幕| 亚洲国产精品一区二区三区四区 | 97精品久久九九中文字幕| 男生操女生的逼视频海量免费| 国产传媒小视频在线观看| 91精品麻豆日日躁夜夜躁| 在线免费看黄国产精品| 在线播放免费观看AV片| 亚洲最大色视频在线观看| 国产欧美日韩综合精品二区| 呃呃啊啊啊好爽快到了黄色| 亚洲人妻一区二区久久| 男女互射视频在线观看| 香蕉久久精品日日躁夜夜躁 | 99久久精品免费看国产免费软件| 国产传媒天美av一区二区三区| 欧洲中文字幕日韩精品成人| 人人妻人人爽人人澡av毛片| 美女脱光衣服露出奶头和尿头吊嗨 | 国内综合视频一区二区三区| 久久久久精品午夜理论片| 91成人精品国产免费男男 | 国产999精品老熟女唐老鸭| av天堂天堂av日韩| 亚洲av不卡一区二区不卡| 97人妻午夜福利视频| 日本黄大片538视频| 亚洲综合一区二区三区精品 | 麻豆国产成人AV高清在线观看| 高颜值午夜福利在线观看| 91在线免费在线观看| 亚洲一区二区懂色av| 九九在线精品亚洲国产涩爱| 精品国产三级国产普通话| 女人下面视频骚粉骚逼操| 货在沙发风骚至极 自摸肥逼勾引 又黄又爽有无遮挡的网站 | 日韩特黄特色大片免费看| 亚洲欧美另类日韩精品| 天堂av一二三区在线播放| 大屁股迷人少妇在线观看| 少妇人妻与黑人精品免费视频| 办公室娇喘的白丝老师在线看| 大鸡巴插入少妇骚穴视频| 亚洲人妻一区二区久久| 在线精品国产亚洲av日韩| 在线观看一区二区三区亚洲| 国产一区二区三区粉穴| 日韩欧美一区二区不卡在线观看视频 | 亚洲人尤物视频在线观看| 日韩中文字幕在线视频免费观看| 亚洲av一区一区二区三| 国产线视频精品免费观看视频| 要肉棒插死骚货黄色视频| 春色在线观看中文字幕91| 东北少妇自拍高潮喷水| 女人逼需要大鸡吧干的视频| 国产精品成人av高清在线观看| 男生把坤坤戳进女生阴道里的视频| 国产成+人+亚洲+综合| 四虎永久在线精品视频免费观看 | 大陆猛男大鸡巴操骚美女骚逼视频| 人妻精品久久一区二区| 国产午夜福利导航在线| 日韩在线国产一区二区 | 哺乳一区二区久久久免费| 国产激情高中生呻吟视频| 国产爽又爽视频在线观看| 绿奴舔屁眼哦哦哦操我啊哦哦哦| 亚洲日本精品熟女视频| 欧美日韩一区二区人妻| 肉棒插小穴视频你懂得分享| 无码无羞耻肉3d动漫在线观看| 手机在线免费观看亚洲黄色av| 强d乱码中文字幕熟女免费| 大鸡巴操美女骚逼嫩穴视频| 欧美精品国产成人综合亚洲| 亚洲精品不卡一二三区| 日本是全亚洲最发达的国家| 国产91精品系列在线观看| 亚洲av一区一区二区三| 日本视频一区二区免费在线观看| 日韩成人a片一区二区三区| 日本黄色中文字幕不卡在线| 久久综合97丁香色香蕉| 在线免费看黄国产精品| 日韩精品在线小视频| 久久狼精品一区二区三区| 久久精品国产亚洲av影片| 动漫无遮羞视频在线观看| 国产成人精品日本亚洲777| 日本不卡二区在线观看| 亚洲色图视频中文字幕| 欧美亚洲区一区二区三区| 欧美一级片内射美女少妇| 人妻精品久久一区二区| 日本不卡二区在线观看| 另类艳情双性人妖视频网站| 欧美精品在欧美一区二区三区| 国产精品熟女自拍视频| 美女高潮潮喷冒白浆免费视频| 国产无遮挡又黄又爽又大| 中文av岛国无码免费播放| 青青河边草视频在线观看| 加勒比东京热综合区一区二| 国产日韩在线一二三区| 97碰碰车成人免费视频| 丁香婷婷激情综合俺也去| 男女鸡巴插黄激情视频欧美| 蜜臀在线观看免费视频| 人成网av精品自在自拍| 黑人巨屌女人操逼视频网| 日本黄色中文字幕不卡在线| 伊人天堂午夜精品草草网| 看日逼的看日逼的看日逼的看日逼 | 亚洲日本乱码一区二区| 亚洲一区二区黄色录像| 美日韩精品一区三区二区| 人妻内射一区二区在线视| 日韩欧美一级精品久久| 日本人妻在线播放一区| 激情人妻av一区二区| 少妇精品视频一区二区免费看| 女人的天堂av网免费| 隔壁人妻bd高清中文字幕| 欧美日韩艺术电影在线| 伦理片免费在在线视频观看| 激情毛片av在线免费看| 成年女人午夜毛片免费视频| 黄色网色网色网色网色| 国产精品自在拍在线拍| 日本在线观看高清区一区二| 日韩精品一区二区三区视频网| 午夜福利宅福利国产精品| 日本不卡在线视频二区三区 | 欧美日韩一区二区成人在线| 色噜噜狠狠狠综合曰曰曰| 九九最新视频免费观看九九视频| 成年女人喷潮毛片免费播放| 男生大肉捧插女生的视频| 日韩中文字幕在线视频免费观看| 丰满少妇被猛烈进入无码蜜桃| 久久免费亚洲免费视频| 亚洲精品偷拍自综合网| 大香蕉在线大香蕉在线大香蕉在线 | 国产午夜福利导航在线| 快插我的逼逼里好爽的免费视频| 99久久精品免费看国产免费软件| 国产精品午夜一区二区三区四区 | 欧美成人动漫免费在线观看| 免费观看拍1000线观看| 精品国产高清中文字幕| 动漫无遮羞视频在线观看| 99久久午夜精品一区二区欧美| 日本视频一区二区免费在线观看| 色橹橹欧美在线观看视频高清免费| 自由成熟性生活免费视频| 国产精品免费网站免费看| 色综合久久久久久久粉嫩| 两个人免费观看日本的完整版| 久久999热这里的精品| 99国产精品亚洲一区二区三区| 91中文字幕国产精品| 男人操女人嗷嗷叫的视频| 老頭搡老女人毛片視頻在錢看| 午夜99精品一区二区三区| 91综合精品国产九色| 国产黄片久久免费观看| 亚洲欧洲av午夜精品| 午夜男女爽爽刺激视频在线观看 | 想高潮插逼逼免费观看视频| 欧美日韩艺术电影在线| 男人大鸡巴日逼视频免费| 免费观看又色又爽又黄的| 一本在线视频中文免费看| 日本黄大片538视频| 啊用大鸡巴操骚逼逼视频| 91中文字幕国产精品| av在线中文字幕乱码| 国产免费一区二区三区最新6| 扫码观看视频的二维码怎么生成 | 国产美女极度色诱视频| 哺乳一区二区久久久免费| 两个人免费观看日本的完整版| 国产视频三区二区在线观看| 国产又猛又黄又爽无遮挡| 综合亚洲欧美一区二区三区| 另类艳情双性人妖视频网站| 精品色欲久久久青青青人人爽| 国产精品高清无遮挡网站| 久久综合亚洲一二三区| 日韩欧美在线观看黄色| 国产精品九色蝌蚪自拍| 女国产精品视频一区二区三区| 午夜av成人在线观看| 精品一区二区日本视频| 欧洲的大长鸡巴操日本小浪逼| 免费成人在线不卡视频| 男人用力插美女下面的视频| 公侵犯人妻中文字幕一区| 午夜福利宅福利国产精品| 久久精品中文字幕一二三| 91九色视频在线观看| 亚洲精品制服丝袜中文字幕乱码| 国产日韩欧美另类专区 | 免费观看av在线播放| 痴女av一区二区三区| 中文字幕日韩精品免费看| 情产国品久久久久久久9999| 亚洲一级毛片免费在线观看 | 夫妻性生活视频在线直播 | 国产区av一区二区三区| 啊用大鸡巴操骚逼逼视频| 啊啊啊啊啊啊啊啊操我啊啊啊免费| 要肉棒插死骚货黄色视频| 大奶女人被操逼操的崩溃| 大鸡巴插学生妹骚逼视频| 午夜宅男在线视频观看| 成人福利视频免费观看| 日本高清视频不卡一区二区| 国产精品污双胞胎在线观看| 伦理片免费在在线视频观看| 日本在线不卡v2区| 中文字幕激情av电影| 久热热久这里只有精品国产| 正在播放干熟妇久久精品视频一本| 大鸡巴抽插女人骚逼视频| 亚洲黄色成人av在线电影| 亚洲av无码乱码国产精000| 国产午夜精品一区二区三区视频| 波兰中年妇女B操B视频| 五月天丁香婷婷狠狠狠| 绿帽娇妻在卧室疯狂的呻吟 | 亚洲AV成人片色在线观看高潮| 男人大鸡巴日逼视频免费| 中文字幕在线观看欧美日韩| 日韩精品视频观看专区| 国产精品高颜值18禁| 国产爽又爽视频在线观看| 成人深夜在线观看免费视频| 131美女爱做视频高清在线| 裸体女人啊啊啊啊射了好多人啊| 国产欧美精品久久99亚洲| 99国产精品久久久久久| 亚洲av情网站在线观看| 国产精品高清无遮挡网站| 国产欧美日韩一区精品| 国产一区二区三区尤物视频| 免费黄色国产精品日更| 精品久久只有精品做人人 | 免费黄色日韩在线观看| 国产a级久久久精品视频| 日韩av中有文字幕在线观看 | 丰满少妇被粗大猛烈进人高清| 日产乱码一二三区别免费| 91久久精品美女高潮喷白桨| 日本视频一区二区三区观看| 久久精品人妻少妇区二区| 无码a级毛片免費视频内谢| 无码国内精品人妻少妇蜜桃视频| 午夜天堂精品一区二区| 中文字幕亚洲精品激情欧美| 日韩精品在线视频vvv| 欧洲日韩国产一区二区| 无码国内精品人妻少妇蜜桃视频| 我要看国产的日逼的视频| 亚洲精品国产成人综合免费| 好好热精品视频在线观看| 国产日韩欧美在线视频播放| 要肉棒插死骚货黄色视频| 男人的天堂一级毛片视频| 亚洲中文字幕有码视频| 公车好紧好爽再搔一点浪一点| 国产在线播放精品一区| 国内少妇自拍视频专区| 久久香蕉国产线看观看6| 欧美人妻一区二区三区88av| 亚洲五月婷婷中文字幕| 国产精品自在拍在线拍| 水蜜桃美女对机机小骚逼| 国产精品无码久久综合网| 我要看国产的日逼的视频| 久久精品国产91麻豆| 国产欧美日韩一区精品| 亚洲人妻av一区二区 | 欧美91精品一区二区三区| 国产成人欧美一区二区三区的| 亚洲精品无码专区在线观看| 9久精品久久综合久久超碰1| 91豆麻精品91久久久久久| 男生把坤坤戳进女生阴道里的视频| 免费国产国语一级特黄aa大片 | 男人抚摸亚洲女大学生的大胸| 色眯眯日本道色综合久久| 综合激情五月三开心五月| 色噜噜狠狠狠综合曰曰曰 | 大鸡巴暴草美女的小骚逼| 全部免费特黄特色大片看片 | 深夜福利一区二区在线观看| 美日韩精品一区三区二区| 18禁看一区二区三区| 99热精品在线观看首页| 日韩成人a片一区二区三区| 无情的大屌操骚穴的视频| 呃呃啊啊啊好爽快到了黄色| 亚洲最大色视频在线观看| 国内少妇自拍视频专区| 少妇厨房愉情理伦片视频在线观看| 亚洲一级特黄大片婷婷| 美味人妻手机在线观看| 国产超碰天天爽天天做天天添| 91豆麻精品91久久久久久| 亚洲欧美国产专区在线观看| 淫荡小骚逼想要大肉棒视频| 日韩午夜三级一区二区| 精品久久久久久中文字幕网 | 亚洲欧洲一级av一区二区久久| 亚洲一级特黄大片婷婷| 国产精品青青爽在线观看| 无码系列久久久人妻无码系列| 男人大丁丁射精AV汇编| 精品色欲久久久青青青人人爽| 99国产成人精品视频app| 欧美日韩一区二区成人在线| 欧美性生活欧美性生活| 国产精品午夜久久久久久久密桃| 精品亚洲456在线播放| 国产鲜肉帅哥大鸡巴操美女逼内射 | 色综合天天综合网天天| 国产在线乱码一区二区三区潮浪| 91九色成人在线观看| 精品一区二区三区毛片无码18| 久久午夜无码鲁丝片午夜精品| 白白色视频免费在线观看| 9久热久re爱免费精品视频| 无码吃奶揉捏奶头高潮视频| 欧美熟妇另娄久久久久久| 久热热久这里只有精品国产| 韩国床震无遮挡免费视频| 成年免费A级毛片天天看| 久热热久这里只有精品国产| 欧美人妻少妇精品久久| 成人麻豆日韩在无码视频| 成人性爱大阴茎视频高甜 | 久久狼精品一区二区三区| 国产非洲一区二区三区久久久久久 | 亚洲欧美日韩偷拍丝袜| 亚洲最大色视频在线观看| 饥渴少妇高潮露脸嗷嗷叫| 91蜜桃臀久久一区二区| 自拍偷自拍亚洲一区二区| 日韩精品少妇专区人妻系列| 久久综合97丁香色香蕉| 中国国语毛片免费观看视频| 男人机巴操女人骚穴视频| 大鸡巴插入少妇骚穴视频| 成人福利视频免费观看| 奇米777狠狠色噜噜狠狠狠| 国产无遮挡又黄又爽又大| 青青草青青草在线观看视频| 一区二区三区激情在线观看 | 九九最新视频免费观看九九视频| 亚洲欧美国产专区在线观看 | 大鸡巴插进小骚逼漫画羞羞漫画| 男生鸡巴操女生逼逼视频。| 久久精品国产三级电影| 中文人妻av一区二区三区| 加勒比一道本在线观看| 香蕉久久夜色精品国产不卡| 撕开奶罩揉吮奶头大尺度视频| 亚洲一区二区三区中文| 四虎永久精品在线免费| 欧美成人午夜福利影院| 欧美熟妇另娄久久久久久 | 色婷婷亚洲一区二区在线| 大肉棒猛插小逼太爽了视频| 在线观看一区二区三区亚洲| 午夜福利片国产精品张柏芝| 日本肥老熟妇在线观看| 激情一区二区三区四区| 成人无码黄动漫在线播放| 亚洲日本一线产区二线区| 俄罗斯美女扒开B口B毛男人玩吗 | 亚洲一区二区三区精品久久av| 久草手机在线观看视频| 大鸡插黄在床上做运动不遮掩| 十八禁网站免费在线观看| 自拍日韩亚洲一区在线| 免费黄色日韩在线观看| 99热这里只有是精品7| 久久精品 国产精品香蕉| 日本在线免费播放一区| 久久婷婷好好热日本手机| 赿南美女拳交操逼视频大片| 自拍偷在线精品自拍偷蜜臀| 最近日本免费播放视频午夜| 无情的大屌操骚穴的视频| 国产免费观看黄av片试看| 男人插女人鸡在线污视频观看| 91亚洲欧美综合高清在线| av日韩精品在线观看| 不要抽骚货的骚逼了视频| 四虎国产永久免费视频| 一区二区三区欧美影片| 亚州欧美大鸡巴操肥逼逼| 色欲av一区二区三区精品| 亚洲中久无码永久在线看| 深夜福利一区二区三区欧美| 亚洲AV无码一区二区三区动漫| 人妻熟女一区二区三区在线| 午夜天堂精品一区二区| 91精品久久午夜大片| 人妻熟女一区二区三区在线| 欧美精品午夜福利不卡| 亚洲熟女国产午夜精品| 在线观看性生活免费看| 成人依依网站亚洲综合久| 美女扒开大腿让男生捅高潮的视频|