操逼啊口爆啊rrr中途啊免费-中文字幕av网一区二区-中文字幕久久精品波多野结百度-国产三级视频在线观看

雙極性晶體管

二極管

ESD保護、TVS、濾波和信號調節(jié)ESD保護

MOSFET

氮化鎵場效應晶體管(GaN FET)

絕緣柵雙極晶體管(IGBTs)

模擬和邏輯IC

汽車應用認證產(chǎn)品(AEC-Q100/Q101)

IAN50009 - Power MOSFET applications in automotive BLDC and PMSM drives

This interactive application note examines power MOSFET applications in automotive BLDC and PMSM drives.

Author: Nandor Bodo, Applications engineer, Manchester

This interactive application note contains embedded Cloud based simulations to augment the text.

To open the embedded simulation, simply hover over the simulation image. Left click anywhere in the graphic area once the central play button changes in colour. This opens the schematic in the Cloud environment. See the interactive application note tutorial page for more details on how to use the simulations.

See accompanying application note AN50009.

 

Download AN50009

Introduction

With today’s top of the range cars having more than 40 electrical machines, the global demand for motor drives rapidly rises. This is especially true for Brushless DC (BLDC) and Permanent Magnet Synchronous Motor (PMSM) drives. BLDC and PMSM are essential parts of Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) propulsion systems towards which priorities globally seem to be directed. BLDC and PMSM drives are also employed where higher power and better regulation is needed in internal combustion vehicles. Some of the key automotive applications for electrical machines and drives are depicted in Fig. 1. Motor applications can be implemented in any of the three main categories shown:

  1. Powertrain – Energy related – key aspect is Performance.
  2. Chassis and Safety – Safety and Comfort – key aspect is Reliability.
  3. Body control – Ease of use and Lighting – key aspect is Cost.

MOSFET automotive applications

Figure 1. Key automotive applications for electrical machines and drives

Figure 2. MOSFET driven Brushed DC motor drive: unidirectional (left) and bidirectional (right).

Electrical machines in automotive applications

Most of the electrical machines in vehicles are volume produced Brushed DC motors that do not have complex speed and torque control requirements. They can be employed in applications such as door locks, mirror folding, electrical seat adjustment and window motors.

The unidirectional and bidirectional Brushed DC motor drives are shown on Fig. 2. More information about these drives can be found in application notes AN50004 and IAN50004.

Figure 3. Three-phase BLDC and PMSM drive

Higher power and control complexity drives in today’s vehicles are mostly realised with BLDC motors. Examples of such applications are water-pump, engine-cooling, anti-locking brake system, fuel-pump and electric steering. These motors, unlike the Brushed DC motors, do not need a physical connection to the rotor. This enables greater robustness, less maintenance, higher power and speed operations. Besides, as it can be seen from the drive configuration in Fig. 3 there are more MOSFETs employed in the drive compared to the Brushed DC motor. This enables current sharing across more devices, inherently increasing the power that can be delivered. As it will be shown later on, the switches operate in sequence, so that one of the three switching pairs does not operate at any instant, allowing the devices to cool. Also, the roles of the switching MOSFET in one phase and the conducting MOSFET (not switching) in the other active phase can be swapped. Both of the afore mentioned methods allow for better distribution of losses across the six MOSFETs, in turn enabling higher power margin up to the maximum die temperature.

Applications that require even higher powers such as the drives involved in the propulsion of the vehicle are mostly realised with PMSM drives. Some of these applications are Electric Power Steering, Starter/Alternator and Transmission pre-charge pumps. The noisier and higher torque ripple operation of the BLDC makes their employment in these applications undesirable. While the higher efficiency, higher power and torque density makes investment in the more expensive PMSMs justified for these applications.

Despite having the same drive structure as the BLDCs (shown in Fig. 3) the PMSMs have completely different modulation and control methods. In fact, even the machine structure is similar, with the difference being in the shape of the produced Back Electro-Motive Force (EMF) having trapezoidal shape with the BLDCs and near-sinusoidal with the PMSM machines.

In the area around a kilowatt of power, there is prospect for both the BLDC and PMSM applications to be designed. Therefore, a 1 kW, 48 V, 3 phase system for the two machine types will be investigated here.

PMSM stator-rotor interaction
Figure 4.?PMSM stator-rotor interaction

PMSM drive theory

This section will explain in simple terms the main principles of PMSM drive. As the name suggests, the PMSM has a permanent magnet (or an array of them) mounted on its rotor. The stator creates a Tesla’s rotating magnetic field. Thanks to the sinusoidal shape of the stator currents and a near-sinusoidal distribution of the stator winding, this field has a constant magnitude but its spatial angle is changed so that it rotates with a uniform speed around the stator circumference, somewhat like the arms of a clock. This magnetic field is the equivalent to having a magnet rotating along the internal stator circumference. Naturally, the magnet of the rotor would tend to align with the stator magnet, causing it to rotate along, at the same speed as the stator field, somewhat as it is shown in Fig. 4.

In order to achieve near-sinusoidal current in all machine phases, all three inverter legs are Pulse Width Modulated (PWM) modulated with sinusoidal reference signals. Sensitive and expensive encoders or resolvers are used to sense the exact rotor position in order to recreate the right phase of the reference sinusoidal supply voltages.

When driven in generator mode, torque is applied to the rotor, forcing it to rotate. This in turn rotates the magnets on the rotor, creating a rotating magnetic field sensed by the stator winding. Due to the sinusoidal spatial distribution of the stator magnets the rotating field induces sinusoidal voltages in the stator windings. If a load is applied to the stator connectors a current will flow through them. This can be inspected in Simulation 1 below.

Simulation 1. PMSM in generator mode

BLDC drive theory

Similarly, to the PMSM the BLDC also has permanent magnets attached to its rotor. However, instead of a rotating field on the stator, the phases are subsequently abruptly energised to pull the rotor magnets forward. This results in a somewhat jerky motion of the rotor, which is filtered to some extent by the rotor and load inertia. The principle is illustrated in Fig. 5. In the first instance, the third inverter leg is idle while the current flows from the top switch of the first inverter leg through phase ‘a’ and phase ‘b’ in reverse direction and finally to the negative dc rail through the lower switch of the second leg. This corresponds to a south pole generated from phase ‘a’ and a north pole generated from phase ‘b’. This driver state is assumed once ‘H1’ hall sensor starts sensing the north pole of the rotor. Because of the construction of the stator and the rotor phase ‘a’ winding pulls the rotor north pole and pushes the rotor south pole away. This state is useful until just before the middle of the rotor south pole reaches the stator phase ‘b’ winding. At this instant H3 hall sensor starts sensing the rotor south pole and the drive configuration changes to the second state in Fig. 5. The currents through the windings are now such that the north pole is generated with winding ‘c’ rather than ‘b’, pushing the rotor north pole further along the stator inner circumference.

There are six such changes taking place in one revolution of the rotor, as shown on the right section of Fig. 5.

Figure. 5. BLDC motor operation principle

PMSM switch rating

When talking about a machine of certain power rating, it is assumed that we are talking about the mechanical power that the machine is capable of delivering on its shaft. For determining the switch rating of the drive, the input electrical power is needed. The difference between the input, electrical and the output, mechanical power are the losses incurring within the machine and drive. Throughout the machine, various losses appear due to magnetization, flow of electric current and mechanical movement of the rotor. These losses can be accounted for by the machine efficiency (η). Therefore, the electrical input power can be expressed as:

(Eq 1)  

The efficiency of the machine depends on the machine type and design quality. For induction machines of several hundred Watts it can go below 50%, while for high-power PMSMs it can reach 95%.

The input power is then expressed as the product of the phase voltage and current root mean square (rms) value:

(Eq 2)  

The number 3 signifies that the drive is three-phase, while the power factor (Pf) is a measure of displacement in time of the voltage and current sinusoidal waveforms. The power factor, a measure inversely indicating the proportion of energy needed for magnetisation of the machine, can also take a broad range of values. PMSM have lower magnetisation requirement and therefore higher power factor values compared to induction machines. They can be driven from unity down to 0.85 power factor.

An inverter is used to drive a PMSM with PWM output voltage. This is illustrated on Fig. 6. The output voltage can take values of 0 V or Vdc. By applying longer pulses of Vdc the average value of the output voltage is increased. As the target (reference) output voltage should be of a sinusoidal shape, with a negative and positive half-cycle, there is no other way of realising it than by adding a dc bias of Vdc/2 to the reference voltage. This will not transfer to the current flow, it will just raise the neutral point potential of the three-phase machine winding since the bias is applied to all three phases.

FIgure 6. Inverter leg with PWM output voltage

It is therefore clear that the maximal output voltage amplitude cannot be higher than Vdc/2. However, certain amount of third harmonic (and its multiples) can be added to the sinusoidal reference. Once again, these harmonics are applied to all three phases, raising the voltage of all three in the same manner and therefore no third harmonic current will flow. The third harmonic can be added in such a way that it decreases the maximum of the reference, allowing more headroom for the reference signal and increasing the modulation range (i.e. the maximum phase voltage applied) by an additional 15%. The same effect can be achieved by calculating the average between the minimum and maximum references (out of the three available) and adding it to all three reference signals. The described method can be studied within Simulation 2. If such reference signals are applied, the performance will be equivalent to space vector modulation.

Simulation 2. Min-max injection modulation method

As the rms voltage is √2 times smaller than the maximum voltage in sinusoidal waveforms, it can be obtained from the Vdc value as:

(Eq 3) 

Next, from (Eq 2) the current rms value can be expressed. Finally, the maximal value of the current is √2 higher than the rms value:

(Eq 4) 

The chosen switch should have at least this current rating. In practise an overload factor of at least 20% is added as well as a safety factor of another 100%. The highest voltage the switch is expected to block is the supply voltage, in cases when the other switch in the same leg is conducting.

BLDC switch rating

BLDCs are mostly aimed at mid-power range applications where machine construction costs are reduced, sacrificing some of the machine efficiency. 

As it is shown in Fig. 5 and its description, one of the three inverter legs is dormant while two are conducting. This means that the machine current along with a voltage up to Vdc/2 is applied to a single phase of the drive 2/3rd of the reference period. As there are three phases the input electric power can be expressed as:

(Eq 5) 

Considering that the current is not as uniform as seen in Fig. 5 a waveform derating factor (wf) of 20% is used to obtain the maximum current the switch shall bear.

(Eq 6) 

The maximum voltage that the switch should block is maintained at Vdc, as with the PMSM.

Table I presents a comparison of the required switch ratings for a 1 kW drive. As it can be seen, the required current values of the switches are similar. The values for the voltage and current rms for the BLDC can be obtained in a similar fashion as for the PMSM, with the ratio between the rms and maximal values being instead of and without the 15% increase due to third harmonic injection.

Table 1. Switch rating comparison for 1 kW drive
  PSMN BLDC Source
Pmeh 1 kW Application requirement
Vbat 48 V Application requirement
Pel 1.11 kW (η = 0.9) 1.17 kW (η = 0.85) (Eq 1)
Vrms 19.51 V 19.59 V (Eq 3)
Irms 21 A (pf = 0.9) 24.5 A (Eq 2) and (Eq 5)
Im 29.8 A 29.4 A (wf = 1.2) (Eq 4) and (Eq 6)

PMSM and BLDC losses calculation

The expected current and voltage that the switches will endure is calculated in the previous section. However, as it is usually the case, the choice of MOSFETs is more constrained by the amount of losses they are designed to endure. The amount of losses is influenced by design requirements (conducted current, switching speed and frequency) or cooling arrangements of the devices.

In this section an explanation of how to calculate these losses will be provided. It needs to be noted that usually at motor control applications the switching frequency is set to be as low as possible as there is no incentive to have it higher. Most applications settle at 20-30 kHz, in order to avoid audible frequencies. It is beneficial to have the switching at lower frequencies so that its harmonics fade out on the frequency axis by the frequency where regulatory requirements start. By having the switching frequency low, the switching losses are not of great relevance in motor control applications.

PMSM conduction losses

The PMSM motor current is sinusoidal, with a certain switching frequency ripple superimposed. Let the period of the sinusoidal control signal be noted with Tc, while the switching period with Ts.

The current in positive direction will flow through the top MOSFET in the positive control half-cycle (T/ 2) during the duty cycle δ in each switching interval Ts. In the negative control half-cycle (T/ 2) for a period (1-δ) Ts negative current will pass through the same switch. Since the top and bottom switches swap roles between control half-cycles (T/ 2) it can be concluded that during a whole control cycle (Tc) one control half-cycle worth of current passes through the switch. This discussion is illustrated in Simulation 3.

Simulation 3. PMSM drive switch current conduction.

The current direction is not relevant because the square of the current is sought. The overall conduction losses can be calculated as:

(Eq 7) 

Where the rms current value is of a half cycle, averaged over the whole cycle period:

(Eq 8) 

This is valid if the reverse voltage drop of the device is below the internal diode conduction threshold and dead-time is not accounted for. For a sinusoidal current with an amplitude Im, the conduction losses come to [1]:
(Eq 9) 

BLDC conduction losses

In BLDC drives the current flows through two inverter legs. In order to regulate the current flowing through the machine windings, at least one of the inverter legs needs to be modulated in order to maintain a desired current magnitude. When only one inverter leg commutates and the other is constantly conducting, the switching method is unipolar, when two legs commutate the switching method is bipolar, as shown in Fig. 7. The unipolar switching shown in Fig. 7 distributes the switching losses between the two FETs of an inverter leg. In both cases the upper and lower switch are being turned on in an alternating manner, to avoid diode loses in the synchronous FET.

Figure 7. Bipolar and unipolar switching of devices

For the conduction losses, the switching mode does not seem to have much influence. The required rms current through the individual switches is the same in both cases. In the bipolar switching mode, looking at the A+, switching at a certain duty cycle δ, a current of value I passes through it for a time δTs (Ts being the switching period) in the first half cycle. In the second half cycle A- is switched with duty cycle δ, while A+ is then switched on for (1- δ)Ts. Therefore, during the hole control cycle a single switch conducts the current equivalent of half a control cycle. Similar is the case with the unipolar switch mode, with the difference that half of the switching cycle the same switch conducts inherently.

Applying (Eq 8) for a constant current I passing through the switch for one third of the switching period, the resulting conduction losses come to:

(Eq 10) 

This conclusion applies when dead-times are very short and the current through the BLDC windings is well controlled to be close to DC with small ripples.

The unipolar method can be simplified, having only the top switches driven with PWM, while the bottom switch is turned on inversely for freewheeling. The respective bottom switches, belonging to the other conducting phase, are held constantly on during the time the current needs to flow through them. In this case uneven distribution of power losses is achieved in the top and bottom switches. The top switch is on for δTs. The bottom switch conducts when it is freewheeling for (1- δ)Ts and for an additional third of the control period when it is held completely on. In this case the integral from (Eq 8) results in:

(Eq 11) 

(Eq 12) 

A simulation for this method is provided in the next section. Due to unequal switch utilisation this method is not discussed further.

In all the switching methods, the diode of the FETs will need to demagnetise the motor phase that stops conducting. The energy accumulated in the phase inductance will therefore be dissipated in each FET diode in each control cycle:

(Eq 13) 

Where L is the machine phase inductance.

Switching losses

The switching energy losses can be estimated as:

(Eq 14)

Where tsw can be approximated by:

 

(Eq 15)
Figure 8. Reading Ion and Vpl(Ion) from the transfer characteristic

Where tsw is the switching time, Ion is the on-state current, Vgd is the gate drive voltage, and RG is the gate resistance. QGD – gate to drain charge and Vpl(Ion) – gate plateau voltage at current Ion, can be read from the data sheet: QGD  from tables and Vpl(Ion) from the transfer characteristic graph (Fig. 8).

In itself, QGD accounts for the voltage transient during the Miller plateau. The current transient that occurs before (turn on) or after (turn off) the Miller plateau is determined by part of QGS. It is accounted for by an approximated increase of the voltage transient by an additional 20 to 30%, represented by the scaling factor sf (sf takes value from 1.2 to 1.3). This percentage is dependent on technology used. The approximation is sufficient here as the switching losses are not expected to dominate because of the low switching frequency. The real switching losses estimates should come from simulations.

The on-state current is the average current in the case of the switching losses. For PMSM the average is calculated for half of the control cycle:
(Eq 16) 

This value can therefore be substituted in (Eq 14) instead of Ion to obtain the switching energies. It is considered that the current ripple is negligible compared to the base value.

The power is then obtained by multiplying the energy values with the number of times a switching occurs during a control half cycle 0.5×fsw/fcc, as the switching losses are negligible when the current through the switch is negative.

(Eq 17) 

In case of the BLDC the switching occurs around I, which needs to be placed in (Eq 14):

(Eq 18) 

The obtained energy levels then need to be multiplied once again with the number of switching occurring in one half of the control period. Due to the device switching only 1/3rd of the half-cycle (Fig. 7 – Unipolar switching) this is expressed as 1/3 × 0.5 × fsw/fcc.

(Eq 19) 

The switching at the negative half cycle is not accounted for in both cases as it is governed by diode switching and it can be omitted. The reason for this is that by the nature of the diode the voltage across it needs to decrease to nearly zero before it can take on any current, achieving nearly zero voltage switching. The diode also cannot start increasing the voltage across its connectors until the current has stopped flowing through it.

Switch selection

As noted, MOSFETs are usually chosen according to the amount of loss they are intended to dissipate.

Based on low switching frequency – 20 kHz is chosen – the conduction losses are expected to be dominant. At this point switching losses are estimated as 50% of conduction losses in PMSMs and 20% in BLDCs. With an allowance of 1.5% losses in the six switches the required RDSon can be calculated from (Eq 9) and (Eq 10) as shown in (Eq 20) and (Eq 21), respectively. The maximum expected current amplitude can be read from Table 1:

(Eq 20) 

(Eq 21) 

This results in a RDSon of 8.3 m? for PMSM and 8.5 m? for the BLDC. To allow for some headroom the BUK7Y7R8-80E is chosen. This is an automotive, 7.8 m?, 80 V, trench 6 technology MOSFET. The drain current of this MOSFET is given as 100 A, roughly 3 times higher than the maximum current needed for the application. This is usual and expected, as the ID rating of the MOSFETs is measured with its mounting base temperature held at 25℃. Table 2 gives an overview of the expected switch performance for a gate drive voltage of 10 V and a gate resistance of 22 ?.

Table 2. Expected switch performance
  PSMN BLDC Source
Switch BUK7Y7R8-80E,

RDSon (typ) = 5.8 m?; VDS = 80 V; I= 100 A, QGD = 17 nC

Data sheet
Pcond 1.29 W 1.16 W (Eq 9) and (Eq10)
Ion 9.94 A 24.5 A (Eq 16) and (Eq18)
Vpl(Ion) 4.7 V 5 V Data sheet  / Fig 8.
tsw_on, tsw_off 88 ns, 99 ns 19.59 V (Eq 15)
Eon+ Eoff 21 µJ, 23 µJ 55 µJ, 55 µJ (Eq 14)
Psw 476 mW 375 mW (Eq 17) and (Eq 19)
Ploss 1.77 W 1.54 W Pcond + Psw

PMSM and BLDC simulations

In this section the simulations for the PMSM (Simulation 4) and BLDC (Simulation 5 and Simulation 6) drive losses are shown. In all simulation switches for one inverter leg have been monitored for energy losses. The electrical motor has been represented by its back EMF, phase resistance and leakage inductance. In the case of the PMSM only one inverter leg is modelled. For the BLDC simulation the switches in the two other inverter leg are replaced by ideal switches to shorten simulation time.

The total energy losses, the MOSFET conduction, turn on and turn off losses are then plotted and their end values displayed. These values should be divided by the simulation length (20 ms) to obtain the results from Table 2. The results from simulation and calculations are compared in Table 3. Simulation 6 is not included in the comparison as the top and bottom switches have a different losses distribution between conduction and switching losses.

 

Table 3. Simulated switch performance
  PSMN BLDC
  Simulation results Theoretical results Simulation results Theoretical results
Switch BUK7Y7R8-80E,

RDSon (typ) = 5.8 m?; VDS = 80 V; I= 100 A, QGD = 17 nC

Vcond 26.6 mJ / 20 ms = 1.33 W 1.29 W 23.8 mJ / 20 ms = 1.19 W 1.16 W
Psw (3.5 mJ + 7.8 mJ/ 20 ms = 565 mW 476 mW (2.7 mJ + 4.3 mJ) / 20 ms = 350 mW 375 mW
Ploss 1.89 W 1.77 W 1.54 W 1.535 W

Simulation 4. PMSM simulation with loss estimation

Simulation 5. BLDC simulation with loss estimation; unipolar modulation; all switches PWM modulated.

Simulation 6. BLDC simulation with loss estimation; unipolar modulation; top switches PWM modulated, bottom switches kept on

Summary

In this interactive application note an overview of electrical machine use in vehicles has been given, including a more detailed look into PMSM and BLDC operating principles. A simple switch selection and switch loss estimation is provided along with simulations to verify the calculations.

References

[1]        J. W. Kolar, H. Ertl and F. C. Zach, "Influence of the modulation method on the conduction and switching losses of a PWM converter system," in IEEE Transactions on Industry Applications, vol. 27, no. 6, pp. 1063-1075, Nov.-Dec. 1991, doi: 10.1109/28.108456.

Page last updated 05 October 2022.
大肉棒猛插小逼太爽了视频| 韩国女主角男女裸体操逼鸡巴操逼| 俄罗斯美女扒开B口B毛男人玩吗| 中国一级全黄的免费观看| 日本黄色一区二区三区| 国产精品成人久久综合| 夜夜爽狠狠天天婷婷五月| 亚洲五月婷婷中文字幕| 男人用鸡巴插女人视频下载| 91麻豆国产自产在线观看亚洲| 国产欧美精品一区二区性色| 国产91手机在线播放青青| 亚洲一区二区av高清| 亚洲欧洲日?国码久在线| 国产免费内射又粗又爽密桃视频| 中文字幕国产不卡一区| 日韩毛片资源在线观看| 最新精品亚洲成a人在线观看| 饥渴少妇高潮露脸嗷嗷叫 | 黄片视频免费在线观看播放 | 国产av丝袜美腿视频一区| 美国女人大兵的大鸡巴操男人的逼| 99国产成人精品视频app| 国产免费成人在线观看视频| 强d乱码中文字幕熟女免费| 外国的大鸡巴操美女骚逼| 66mio人妻精品一区二区三区| 美女扒开双腿被捅的视频| 中文人妻无码一区二区三区在线| 亚洲精品国产欧美成人| 亚洲av情网站在线观看| 欧美激情日韩精品久久久| 午夜影院1000在线免费观看| 国产欧美又粗又长又爽| 欧美乱妇高清无乱码亚洲欧美| 国产自拍偷拍在线福利| 大鸡巴暴草美女的小骚逼| 欧美一区二区三区裸体| 日本不卡在线视频二区三区 | 动态强干叉美女小穴视频| 日本五十路熟女啪啪啪| 日本肥老熟妇在线观看| 精品一区二区三区毛片无码18| 深夜视频在线观看你懂的| 国产综合亚洲欧美日韩在线| 国产日韩精品专区免费| 国产精品久久av麻豆| 国产精品一区二区亚洲推荐| 水蜜桃美女对机机小骚逼| 亚洲欧洲一级av一区二区久久| 超碰98人人插完整版在线观看| 亚洲一区二区二区久久成人婷婷| 国产高清视频一区二区| 国产精品自在拍在线拍| 国产三级在线观看官网| 男女性情视频免费网站| 国产福利精品蜜臀91啪| 亚洲少妇插进去综合网| 国产精品一区二区三区欧美| 精品色欲久久久青青青人人爽| 日本视频一区二区三区观看| 日韩黄片毛片在线观看| 老女人黄色性生活高清版| 国语成人高清在线观看| 夫目中文字幕一区二区| 久久精品久久精品伊人69| 中文人妻av一区二区| 欧美日韩免费r在线视频| 十八禁网站免费在线观看| 国产最新视频一区二区三区| 亚洲一级毛片免费在线观看| 亚洲一区二区二区久久成人婷婷| 久久精品 国产精品香蕉| 一本到中文无码AV一区| 亚洲日本国产乱码va在线观看| 中国一级做a爰片久久毛片| 国产日本草莓久久久久久| 欧美精品久久天堂久久精品| 美日韩精品一区三区二区| 操逼内射女生免费视频黄片| 日日噜噜噜夜夜噜噜噜| 又粗又长鸡巴插进极品美女逼逼里| 亚洲卡通动漫精品中文在线观看| 美女扒开屁股让男人桶大奶子骚逼| 情产国品久久久久久久9999 | 欧美成人动漫免费在线观看 | 亚洲天堂一区二区免费不卡| 中文字幕人妻少妇久久| 大鸡巴插入少妇骚穴视频| 91久久精品一区二区三区色欲| 亚洲av人片乱码色午夜| 人人爽人人澡人人人人妻| 日本韩国美女久久午夜| 成人依依网站亚洲综合久| 亚洲香蕉大尺码专区在线直播 | 亚洲欧洲av午夜精品| 欧美91精品国产自产在线| 无遮挡男女一进一出视频真人| av黄色在线观看一区二区三区| 五月婷婷六月丁香深爱| 欧美性生活欧美性生活| 久久精品 国产精品香蕉| 美女被黑人鸡巴草的爱液狂溅| 欧美91精品国产自产在线| 欧美日韩人妻精品一区二区在线 | 久久久久久曰本av免费免费看| 人妖系列中文字幕欧美系列 | 黄片视频在线观看国产| 日韩在线一区精品视频漫画| 成人免费淫片在线观看免费| 亚洲AV无码一区二区三区动漫| 一本到中文无码AV一区| 欧美人妻一区二区三区88av| 日韩欧美亚洲国产精品幕久久久| 一区二区三区毛片国产一区| 人妻少妇精品中文字幕av蜜桃| 插烧女人屁眼视频在线观看| 国产精品美女性感视频一区二区| 亚洲少妇插进去综合网| 亚洲欧洲日?国码久在线| 99国产精品国产自在现线| 亚洲一区二区三区欧美在线观看 | 裸体女人啊啊啊啊射了好多人啊 | 在线观看日本一区二区三区四区| 在线观看日韩一区二区视频| 中国一级做a爰片久久毛片| 国产精品久久久精品免费| 一区二区三区激情在线观看| 超性感美女被狂日高潮免費視頻| 美国妓女与亚洲男人交配视频| 日本人妻在线播放一区| 国产精品污双胞胎在线观看| 亲少妇摸少妇和少妇啪啪| 操爆白皙美女下面的骚逼视频 | 大陆猛男大鸡巴操骚美女骚逼视频| 五月天丁香啪啪激情综合| 午夜男女爽爽刺激视频在线观看 | 在线观看亚洲欧洲精品| 欧美成人三区四区在线观看| 久久精品人妻少妇区二区| 撕开奶罩揉吮奶头大尺度视频 | 黄色三级三级三级免费观看| 天堂丝袜人妻中文字幕在线| 亚洲精品无码专区在线观看| 亚洲欧洲一级av一区二区久久| 我爱美女小骚骚的小骚逼| 白色紧身裤无码系列在线| 日韩欧美黄片在线播放| 国产三级精品在线不卡| 又色又爽又黄的视频大全| 在线播放国产精品口爆| 蜜桃久久精品一区二区| 男人天堂一区二区av| 国产成人欧美一区二区三区的 | 日日噜噜噜夜夜噜噜噜| 中文字幕乱码一区久久麻豆蜜芽 | 97碰碰车成人免费视频| 久久精品 国产精品香蕉| 这里都是精品熟女内射| av午夜精品一区二区三区| 在线播放国产精品自拍| 欧美人与禽交片在线观看| 色婷婷五月综合亚洲大全在线观看 | 国产一区二区三区尤物视频| 夜夜嗨天堂精品一区二区| 欧美A极v片亚洲A极v片| 国产精品中文一区二区| 好吊视频免费在线观看| 在线人妻无码中文dvd视频 | 日韩精品视频在线观看的| 中文字幕av无码不卡二区| 日本精品福利在线视频| 在线观国产精品日韩av| 久久精品国产亚洲av影片| 国产无遮挡又黄又爽又大| 国产精品成人自拍视频| 美国黑人大屌操白美女小逼逼| 午夜老湿机福利免费观看| 草草影院黄色在线观看| 免费国产高清在线观看最新| 手机在线免费观看亚洲黄色av| 青青草青青草在线观看视频| 黄色网色网色网色网色| 欧美二精品二区免费看| 国产精品欧美国产精品| 精品国产尤物黑料在线观看 | 一区二区三区人妻在线| 男人鸡巴插进女人B里的视频| 在线日韩人妻高清在线| 亚洲欧美制服在线88p| 国产区av一区二区三区| 亚洲综合国产伊人五月婷| 一级国产片在线观看免费| 女生尿洞被男生捅的视频| 国产亚洲一区二区三区精品久久| 91中文字幕在线永久| 亚洲中文字幕中文在线| 97精品在线全国免费视频| 国产在线精品免费播放| 两个奶头被吃高潮视频免费版| 亚洲高清在线精品一区二区| 国产人成91精品免费观看| 91中文字幕一区二区| 亚洲香蕉视频综合在线| 夜夜躁日日躁狠狠久久av乐播| 淫荡小骚逼想要大肉棒视频| 亚洲精品一二三区不卡| 国产精品久久久久久久第一福利| 手机免费av片在线观看| 成人免费在线视频日韩| 欧美精品aaaa久久久| 好吊妞一样的免费视频| 国产视频久久久久久久久久久| 色综合久久久国产精品| 亚洲国产午夜福利视频| 好吊妞人成视频在线观看| 操逼激情破处大鸡吧插进| 极品美女高潮精品16p| 五月婷婷六月丁香亚洲综合| 久久天天躁拫拫躁夜夜AV| 国内精品久久久久久一区二区 | 成年美女黄网站大片免费| 日韩爱爱视频在线观看| av中文字幕潮喷在线观看| 情产国品久久久久久久9999 | 色欲天综合久久久无码网中文| 亚洲黄色成人av在线电影| 性生活在线免费观看小视频| 四虎永久在线精品视频观看| 尹人大香蕉在线精品视频| 卡通动漫一区二区综合| 国产视频久久久久久久久久久| 日韩美女一区二区三区在线观看| 国产免费人成视频尤物| 深夜福利一区二区三区欧美| 搭讪人妻中文字幕系列| 99国产精品黄色片子| 麻豆回家视频区一区二| av精彩天堂在线观看| 日韩成人a片一区二区三区| 看蓝色的鸡巴搞进去女人的逼里面 | 亚洲伊人情人综合网站| 黑人爆操中国明星美女小嫩逼视频| 亚洲国产精品一区二区三区四区| 欧美精品国产成人综合亚洲| 动态强干叉美女小穴视频| 亚洲欧美另类丝袜在线| 久久精品国产欧美电影| 亚洲欧美日韩偷拍丝袜| 日本是全亚洲最发达的国家| 欧美一级久久久一区二区| 日本大黄毛逼自拍视频| 久久精品免视看国产成人| 九九热视频大全精品免费| 青青河边草视频在线观看| 男生操女生的逼视频海量免费| 国产一级性生活片免费观看| 欧美视频中文字幕视频日韩视频| 男人把女人捅到爽爆免费视频| 国产成人无码区免费AV片蜜臀| 亚洲免费视频区一区二| 欧美成人高清视频性生活| 加勒比一道本在线观看| 天天操天天干五月婷婷热| 亚洲欧洲国产精品香蕉网| 大鸡吧操我纸牌视频啊啊啊| 青青草99久久这里只有精品| 久久久久精品产亚洲av| 日韩一区二区三区影片| 99热精品在线观看首页| 日本欧美高清乱码一区二区| 色噜噜狠狠狠综合曰曰曰| 久久精品 国产精品香蕉| 美女露出逼让男生用鸡巴捅| 日本女中年在工作隐私小鸡巴操逼 | 自拍偷在线精品自拍偷蜜臀| 果冻传媒精选麻豆二区| 欧美激情日韩精品久久久| 亚洲欧洲av午夜精品| 亚洲五月婷婷中文字幕| 久久99这里只有免费费精品| 国产在线小视频免费观看| 欧美一区二区三区最新| 91中文字幕一区二区| 日本到在线高清视频观看| 欧美二精品二区免费看| 国自产精品手机在线观看视| 男人抚摸亚洲女大学生的大胸| 韩国成人台湾天堂在线| 99久久精品免费看国产免费软件 | 我要看外国女生操逼逼的视频| 操爆白皙美女下面的骚逼视频| 国产男女猛进猛出粗暴啊| 水蜜桃美女对机机小骚逼| 夫目中文字幕一区二区| 想看操真人老女人逼的视频| 国产日韩精品专区免费| 激情五月天亚洲日婷婷| 91精品人妻一区二区蜜桃| 日韩亚洲在线观看视频| 男人捅开女人的逼国语对白| 热99RE久久精品这里都是精品| 男人鸡巴插进女人B里的视频 | 日本东京热av在线观看| 男生操女生小逼爽爽爽看看| 精品一区二区日本视频| 亚洲一级特黄大片婷婷| 亚洲精品在线韩国日本| 99热精品在线观看首页| 亚洲精品国产成人综合免费| 国产最新视频一区二区三区| 男人把女人捅到爽爆免费视频 | 五月婷婷六月丁香亚洲综合| 野花视频在线观看免费高清版| 可以免费看的欧美黄片| 国产裸体美女永久免费无遮挡| 呃呃啊啊啊好爽快到了黄色| 午夜伦理视频免费观看| 99久久视频久久热视频| 久草福利资源在线播放| 老女人黄色性生活高清版| 一区二区三区激情在线观看 | 91综合精品国产九色| 日韩一区二区三区免费观看的人| 成人欧美一区二区三区1314| 东北老女人被操的大声喊逼痒死| 免费黄色国产精品日更| 亚洲精品第一页在线观看| 精品国产av一区二区三区蜜臀| 国产肥熟女老太老妇A片| 国产尤物av一区在线| 中文字幕乱码熟女人妻| 国产午夜精品一区理论片| 男人大鸡巴插进美女逼里视频强奸 | 九九热视频大全精品免费 | 亚洲国产欧洲综合997| 亚洲av二三四五又爽又色又色 | 国产免费一区二区三区最新6| 国产精品一级二级三级视频| 99re7在线观看国产精品| 夫目中文字幕一区二区| 男生把坤坤戳进女生阴道里的视频| 啊啊草死我爽日本在线观看| 男人用力插美女下面的视频 | 在线日韩AV免费永久观看| 国产男女高清视频在线| 无遮挡18禁啪啪羞羞漫画| 久久人妻久久人妻涩爱| 巨乳av在线免费观看| 青青国国产视在线播放观看91| 国产欧美精品一区二区久久久| 婷婷精品国产一区二区| 啊啊啊啊啊啊啊啊操我啊啊啊免费| 欧美成人午夜福利影院| 看蓝色的鸡巴搞进去女人的逼里面| 国产无遮挡又黄又爽又大| 神马午夜伦理精品亚洲| 久久精品国产亚洲av影片| 久久久久亚洲av成人网热| 激情毛片av在线免费看| 99热这里只有是精品7| 美女主播视频福利一区二区 | 日韩在线国产一区二区| 久久久成人亚洲精品无码| 国产精品欧美精品日韩精品| 久久偷拍情侣激情视频| 91日本精品免费在线视频| 黑人巨大精品欧美完整版| 国内综合视频一区二区三区| 亚洲av精品一区在线| 亚洲va久久久久久久精品综合| 欧美精品国产成人综合亚洲| 美女扒开双腿被捅的视频| 国产精品成人自拍视频| 国产精品视频免费自拍| 色婷婷亚洲一区二区在线| 自拍偷在线精品自拍偷蜜臀| 不要抽骚货的骚逼了视频| 久久精品美国亚洲av伦理| 蜜桃免费视频在这里看| 国产无遮挡又爽免费视频| 插烧女人屁眼视频在线观看| 日韩欧美人妻之中文字幕| 我要看外国女生操逼逼的视频| 蜜臀av国内精品久久久久久久久| 亚洲卡通动漫精品中文在线观看| 日韩精品无乱一区二区| 亚洲无线码中文字幕在线| 久久精品免视看国产成人 | 成人无码av片在线观看蜜芽 | 中文字幕一区二区三区乱码| 寂寞少妇让水电工爽了一| 玖玖热在线视频免费观看| 人妻精品久久一区二区| 国产视频久久久久久久久久久| av天堂午夜在线观看| 一区二区三区在线观看日本| av在线中文字幕乱码| 亚洲欧美另类日韩精品 | 操逼内射女生免费视频黄片 | 久久这里只有视频精品| 日本高清一区二区三区高清视频 | 日韩精品视频在线观看的| 国产精品熟女自拍视频| 水蜜桃在线精品视频网| 久久这里只有偷拍精品视频| 亚洲精品一区二区久久| 91福利免费体验区试看藏经阁| 看操小日本女人乱伦逼视频| 国产欧美日韩综合精品二区| 不卡久久精品国产亚洲av不卡| 91男厕偷拍男厕偷拍高清| 午夜福利十八周岁成人| 乱淫一区二区三区麻豆| 日韩av天堂手机在线观看| 美女又爽又喷奶观看免费| 美日韩精品一区三区二区| 日韩av高清不卡一区二区三区| 国产欧美精品一区二区久久久| 在线观看日本一区二区三区四区| 国产视频三区二区在线观看| 五月婷婷六月丁香深爱| 看操小日本女人乱伦逼视频| 亚洲精品无码专区在线观看| 国产美女91精品在线观看| 国产超级碰碰人在线播放| 17岁日本免费完整版观看| 男女性情视频免费网站| 国际b站免费直播入口MBA智库 | 亚洲另类激情综合偷自拍| 久久精品无码一级毛片温泉| 不卡av免费在线网址| 嗯啊不要用力操逼视频cable| 黄色国产精品视频入口| 日本女优禁断视频中文字幕| 探花农村老头操老妇说话对白| 88v中文字幕熟女人妻一区| 亚洲精品成人中文字幕| 国产非洲一区二区三区久久久久久| 亚洲av人片乱码色午夜| 日韩三级中文字幕不卡| 扫码观看视频的二维码怎么生成| 国产精品青青爽在线观看| 97精品在线全国免费视频| 黄色三级电影在线入口| 人妻久久久一区二区三区视频| 国产av天堂久久精品| 国产精品三级精品国产50| 黑人爆操中国明星美女小嫩逼视频 | 黄色一级精品久久久九九| 国产欧美精品一区二区性色| 自拍偷拍欧美日韩高清不卡| 好吊妞人成视频在线观看| 国产精品中文一区二区 | 久久久亚洲国产精品一区| 亚洲精品一区二区久久| 99久久精品国产成人综合| 国产日韩欧美亚洲专区| 超碰插你激情免费在线| 一级国产片在线观看免费| 天堂av毛片免费在线看| 香港三日本三韩国三欧美三级 | 国产精品午夜一区二区三区四区| 韩国三级一区二区三区| 蜜臀在线观看免费视频| 热99RE久久精品这里都是精品| 国产精品高颜值18禁| 日韩推理片2021电影在线观看| 国产夫妻自拍刺激视频在线播放| 男人和女人插插视频免费看 | 五十老熟女高潮嗷嗷叫| 国产一区二区四区在线观看视频| 色吊丝最新永久免费观看| 91福利国产在线人成观看| 欧美日韩国产一二三四区永久在线| 午夜视频免费在线观看免费| 欧美日韩综合不卡一区二区三区| 极品人妻手机视频在线| 国产一区二区三区三洲| 日本高清一区二区欧美| 欧美熟妇另娄久久久久久| 色久悠悠在线观看视频| 香蕉av秘 一区二区三区| 亚洲av天堂在线免费观看| 国产精品熟女自拍视频| 成人午夜福利视频网址| 深夜福利一区二区在线观看| 99久久视频久久热视频| 性生活视频在线观看视频| 精品国产三级国产普通话| 少妇高潮喷水久久久久久久久久| 欧美二精品二区免费看| 久久999热这里的精品| 色眯眯日本道色综合久久| 国产在线视频一区二区不卡| 五月婷婷六月丁香亚洲综合| 欧美日韩艺术电影在线| 欧美91精品国产自产在线| 成年女人午夜毛片免费视频| 色哟哟一区二区三区四区视频 | 精品中文字幕一级久久免费 | 亚洲一区国产午夜福利| 男人的天堂av免费社区| 美女av一区二区三区| 午夜激情视频福利在线观看| 中文字幕中文字幕乱码| 日韩av天堂手机在线观看| 亚洲一区二区三区网址| 国产日韩欧美另类专区| 四虎国产永久免费视频| 国产成人精品自产拍在线观看| 亚洲最大色视频在线观看| 国产中文字幕日韩精品| 97人人视频波多野结衣蜜月| 91久久精品一区二区三区色欲| 九九热最新免费在线观看| 亚洲va久久久久久久精品综合| av永久网站在线观看| 日韩精品少妇专区人妻系列| 国产亚洲一区二区三区精品久久| av日韩精品在线观看| 奇米777狠狠色噜噜狠狠狠| 国产中文成人精品久久久| 无码a级毛片免費视频内谢| 伊人久久综合大杳蕉中文无码| 久久久精品国产精品久久| 国产一区二区三区三洲| 男人下面插入女生下面啊啊啊视频 | 国产精品免费视频播放不卡| 超碰人人爽爽人人爽人人 | 免费观看拍1000线观看| 日本成人大片一区二区 | 久久久综合久久久鬼88| 在线播放日本国产精品| 亚洲精久久久久久无码精品| 99久久精品国产成人综合| 美女扒开屁股让男人桶大奶子骚逼| 激情五月六月婷婷色视频| 伊人久久大香线蕉亚洲av| 99久视频在线观看免费| 午夜福利十八周岁成人| 亚洲综合国产伊人五月婷| 日韩在线一区精品视频漫画| 免费在线观看国产不卡| 操逼内射女生免费视频黄片| 中文字幕一区二区三区乱码人妻| 伊人天堂午夜精品草草网| 在线观看永久免费黄色| 久久国产综合尤物免费观看| 亲少妇摸少妇和少妇啪啪| 无码人妻精品丰满熟妇区| 国产精品国产三级国产普| 国产精品超碰在线97| 黄色av网站一区二区三区| 久草手机在线观看视频| 久久999精品米奇久久久| 欧美日韩精品在线观看| 亚洲欧美国产日韩专区| 四虎精品视频永久免费| 久久精品国产亚洲欧美成人| 公侵犯人妻中文字幕一区| 亚洲熟女国产午夜精品| 久久精品熟女亚洲av天美| 99国产精品亚洲一区二区三区| 韩国成人台湾天堂在线| 精品国语自产拍在线观看| 性生活在线免费观看小视频| 国产精品我不卡在线观看| 99久久精品99久久精品视频| 美日韩一级片欧美一级片| 日韩在线国产一区二区| 日韩av在线播放免费观看| 美女国产黄色三级片在线播放| 亚洲毛片成人在线观看| 一级国产片在线观看免费| 亚洲伊人情人综合网站| 自拍偷自拍亚洲一区二区| 东北少妇自拍高潮喷水| 国内精品久久久久久一区二区| 精品人妻一区二区三区mp4| 青青草青娱乐免费在线视频| 香蕉欧美在线视频播放| 国产黄片久久免费观看| 在线观看永久免费黄色| 国产精品自在拍在线拍| 人妻在线有码中文字幕| 想高潮插逼逼免费观看视频| 99国产成人精品视频app| 日韩一区二区三区免费视频 | 国产非洲一区二区三区久久久久久 | 国产欧美精品一区二区久久久| 欧美精品久久久天堂一区| 亚洲人妻一区二区久久| 人妻人人澡人人添人人爽桃色 | 国产传媒小视频在线观看| 亚洲一区二区三区网址| 中国一级全黄的免费观看| 99国产精品久久久久久| 日韩成人福利在线视频| 动态强干叉美女小穴视频| 免费看美女私人部位的直播| 美女很黄很黄的视频免费| 91精品人妻一区二区蜜桃| 日韩午夜一区二区三区| 野花视频在线观看免费高清版 | 国产一二三在线不卡视频| 亚洲日本乱码一区二区| 国产郑州性生活免费| 18禁止免费网站免费观看| 大奶女人被操逼操的崩溃| 欧美激情视频一区 二区| 女自慰喷水大学生高清免费看| 国产无遮挡又爽免费视频| 中文字幕 乱码 中文乱码视频| 大鸡巴不停抽插双插喷水漫画视频| 隔壁人妻欲求不满中文字幕| 国产va免费精品观看精品视频| 好好热精品视频在线观看| 神马午夜伦理精品亚洲| 猛男人插女人逼里面操逼| 久久免费亚洲免费视频| 国产综合色在线视频观看| 国产精品无码久久综合网 | 91性高久久久久久久久久久| 国产精品我不卡在线观看| 日韩欧美黄片在线播放| 久久香蕉国产线看观看6| 91九色成人在线观看| 欧洲免费无线码在线观看土| 人妻中文av无码字幕久久| 男生用鸡鸡捅女生屁股免费视频 | 美女av一区二区三区| 激情一区二区三区四区| 中文字幕人妻熟女人妻av| 四虎永久在线精品视频观看| 亚洲AV永久无码精品蜜芽| 一区二区三区欧美影片| 中文亚洲精品在线观看| 高跟翘臀后进式视频在线观看| 色综合久久久久综合体| 亚洲av一区一区二区三| 日韩亚洲人妻一区二区| 亚洲精品制服丝袜中文字幕乱码| 亚洲av无码乱码国产精000| 97精品在线视频播放| 午夜视频国产一区二区三区| 久久精品av免费观看| 美女高潮潮喷冒白浆免费视频 | 人妻精品久久一区二区| 黄色三级三级三级免费观看| 日本一道本日韩精品欧美| 亚洲天堂自拍偷拍韩日美| 亚洲精品国产成人综合免费| 性生活视频在线观看视频| 菠萝菠萝蜜在线视频在线播放| 亚洲国产精品毛片av在线下载| 女人的天堂av网免费| 国产精品亚洲综合图区| 成人国产亚洲欧美日韩| 国内综合视频一区二区三区 | 夫妻性生活视频在线免费看| 曰本精品人妻久久久久久| 动漫无遮羞视频在线观看| 男人机巴操女人骚穴视频| 久久午夜无码鲁丝片午夜精品| 国产在线小视频免费观看| 91精品国产福利在线观看性色 | 我要看外国女生操逼逼的视频| 亚洲同性男男GV在线观看| 人妻久久久一区二区三区视频 | 懂色av免费在线播放| 91福利国产在线人成观看| 一起草视频网站在线播放| 黄色视频在线观看破处女| 久久国产综合尤物免费观看| 鸡鸡插进骚逼视频欧美996| 国产av天堂久久精品| 四虎亚洲中文在线观看| 亚洲一区二区黄色录像| 亚洲av伊人久久综合性色| 国内综合视频一区二区三区| 超大鸡巴操处女小骚逼免费视频 | 久久精品国产99久久6动漫欧| 97精品久久九九中文字幕| 果冻传媒精选麻豆二区| jk黑丝白丝国产精品| 99热这里只有是精品7| 免费无码va一区二区三| 在线人妻无码中文dvd视频| 午夜天堂精品一区二区| 国产免费av片在线观看| 亚洲精品美女在线观看播放| 国产一区二区三区二区| 太大太粗好爽受不了视频| 国产亚洲一区二区三区精品久久| 久久洲Av无码西西人体| 午夜亚洲理论片在线观看| 亚洲五月婷婷中文字幕| 香蕉成人伊视频在线观看| 精品久久国产蜜臀色欲69| 国产av自拍日韩高av| 美女粉嫩的逼被操到喷水| 亚洲AV无码一区二区三区动漫 | 男人抚摸亚洲女大学生的大胸| 亲少妇摸少妇和少妇啪啪| 99久久精品免费看国产免费软件 | 欧洲亚洲综合一区二区三区| 国内综合视频一区二区三区| 五月婷婷久久综合激情| 国际b站免费直播入口MBA智库 | 日韩一区二区三区免费视频| 国产福利午夜精品视频| 欧美日韩免费r在线视频| 日韩精品在线小视频| 欧美日韩中文精品在线| 给我播放免费在线视频| 水蜜桃美女对机机小骚逼 | 国产白嫩无套视频在线播放蜜桃 | 人妻少妇被猛烈进入中出视频| 99久久婷婷国产综合精品免费 | 综合激情五月三开心五月| 大鸡巴操女生视频男上女下式黑人| 丁香婷婷激情综合俺也去| 韩国三级伦理在线观看| 精品人妻一区二区三区中文字幕| 成人公开无码免费DVD视频| 亚洲韩国强奸理伦中文字| 男生用鸡鸡捅女生屁股免费视频 | 成人精品一区二区三区不卡| 正在播放国产无套露脸视频| 99热这里全部都是精品| 啊我要吃大鸡巴 插到骚逼里好大| 亚洲99精品一区二区三区| 国产精品人成在线播放| 国产在线乱码一区二区三区潮浪| 日韩av高清不卡一区二区三区| 日韩av天堂手机在线观看| 日本成人午夜福利电影| 亚州欧美大鸡巴操肥逼逼| 97久久精品国产精品青草| 91精品人妻一区二区蜜桃| 国产亚洲中文一区二区 | 日本黄色中文字幕不卡在线 | 绿帽娇妻在卧室疯狂的呻吟| 999久久久久国产精品麻豆| 在线免费看黄国产精品| 女自慰喷水大学生高清免费看 | 国产av自拍日韩高av| 隔壁人妻欲求不满中文字幕| 成人无码av片在线观看蜜芽 | 亚州欧美大鸡巴操肥逼逼| 亚洲欧美国产专区在线观看| 边吃奶边摸下我好爽免费视频| 午夜av成人在线观看| 伊人2222成人综合网| 中文字幕乱码熟女人妻| 92午夜福利在线视频| 亚洲一区二区懂色av| 亚洲欧美在线视频第一区第二区| 亚洲欧美国产专区在线观看| 久久精品国产亚洲av影片| 神马午夜伦理精品亚洲| 日韩一区二区三区免费观看的人| 色婷婷五月综合亚洲大全在线观看|