操逼啊口爆啊rrr中途啊免费-中文字幕av网一区二区-中文字幕久久精品波多野结百度-国产三级视频在线观看

雙極性晶體管

二極管

ESD保護、TVS、濾波和信號調節(jié)ESD保護

MOSFET

氮化鎵場效應晶體管(GaN FET)

絕緣柵雙極晶體管(IGBTs)

模擬和邏輯IC

汽車應用認證產(chǎn)品(AEC-Q100/Q101)

IAN50009 - Power MOSFET applications in automotive BLDC and PMSM drives

This interactive application note examines power MOSFET applications in automotive BLDC and PMSM drives.

Author: Nandor Bodo, Applications engineer, Manchester

This interactive application note contains embedded Cloud based simulations to augment the text.

To open the embedded simulation, simply hover over the simulation image. Left click anywhere in the graphic area once the central play button changes in colour. This opens the schematic in the Cloud environment. See the interactive application note tutorial page for more details on how to use the simulations.

See accompanying application note AN50009.

 

Download AN50009

Introduction

With today’s top of the range cars having more than 40 electrical machines, the global demand for motor drives rapidly rises. This is especially true for Brushless DC (BLDC) and Permanent Magnet Synchronous Motor (PMSM) drives. BLDC and PMSM are essential parts of Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) propulsion systems towards which priorities globally seem to be directed. BLDC and PMSM drives are also employed where higher power and better regulation is needed in internal combustion vehicles. Some of the key automotive applications for electrical machines and drives are depicted in Fig. 1. Motor applications can be implemented in any of the three main categories shown:

  1. Powertrain – Energy related – key aspect is Performance.
  2. Chassis and Safety – Safety and Comfort – key aspect is Reliability.
  3. Body control – Ease of use and Lighting – key aspect is Cost.

MOSFET automotive applications

Figure 1. Key automotive applications for electrical machines and drives

Figure 2. MOSFET driven Brushed DC motor drive: unidirectional (left) and bidirectional (right).

Electrical machines in automotive applications

Most of the electrical machines in vehicles are volume produced Brushed DC motors that do not have complex speed and torque control requirements. They can be employed in applications such as door locks, mirror folding, electrical seat adjustment and window motors.

The unidirectional and bidirectional Brushed DC motor drives are shown on Fig. 2. More information about these drives can be found in application notes AN50004 and IAN50004.

Figure 3. Three-phase BLDC and PMSM drive

Higher power and control complexity drives in today’s vehicles are mostly realised with BLDC motors. Examples of such applications are water-pump, engine-cooling, anti-locking brake system, fuel-pump and electric steering. These motors, unlike the Brushed DC motors, do not need a physical connection to the rotor. This enables greater robustness, less maintenance, higher power and speed operations. Besides, as it can be seen from the drive configuration in Fig. 3 there are more MOSFETs employed in the drive compared to the Brushed DC motor. This enables current sharing across more devices, inherently increasing the power that can be delivered. As it will be shown later on, the switches operate in sequence, so that one of the three switching pairs does not operate at any instant, allowing the devices to cool. Also, the roles of the switching MOSFET in one phase and the conducting MOSFET (not switching) in the other active phase can be swapped. Both of the afore mentioned methods allow for better distribution of losses across the six MOSFETs, in turn enabling higher power margin up to the maximum die temperature.

Applications that require even higher powers such as the drives involved in the propulsion of the vehicle are mostly realised with PMSM drives. Some of these applications are Electric Power Steering, Starter/Alternator and Transmission pre-charge pumps. The noisier and higher torque ripple operation of the BLDC makes their employment in these applications undesirable. While the higher efficiency, higher power and torque density makes investment in the more expensive PMSMs justified for these applications.

Despite having the same drive structure as the BLDCs (shown in Fig. 3) the PMSMs have completely different modulation and control methods. In fact, even the machine structure is similar, with the difference being in the shape of the produced Back Electro-Motive Force (EMF) having trapezoidal shape with the BLDCs and near-sinusoidal with the PMSM machines.

In the area around a kilowatt of power, there is prospect for both the BLDC and PMSM applications to be designed. Therefore, a 1 kW, 48 V, 3 phase system for the two machine types will be investigated here.

PMSM stator-rotor interaction
Figure 4.?PMSM stator-rotor interaction

PMSM drive theory

This section will explain in simple terms the main principles of PMSM drive. As the name suggests, the PMSM has a permanent magnet (or an array of them) mounted on its rotor. The stator creates a Tesla’s rotating magnetic field. Thanks to the sinusoidal shape of the stator currents and a near-sinusoidal distribution of the stator winding, this field has a constant magnitude but its spatial angle is changed so that it rotates with a uniform speed around the stator circumference, somewhat like the arms of a clock. This magnetic field is the equivalent to having a magnet rotating along the internal stator circumference. Naturally, the magnet of the rotor would tend to align with the stator magnet, causing it to rotate along, at the same speed as the stator field, somewhat as it is shown in Fig. 4.

In order to achieve near-sinusoidal current in all machine phases, all three inverter legs are Pulse Width Modulated (PWM) modulated with sinusoidal reference signals. Sensitive and expensive encoders or resolvers are used to sense the exact rotor position in order to recreate the right phase of the reference sinusoidal supply voltages.

When driven in generator mode, torque is applied to the rotor, forcing it to rotate. This in turn rotates the magnets on the rotor, creating a rotating magnetic field sensed by the stator winding. Due to the sinusoidal spatial distribution of the stator magnets the rotating field induces sinusoidal voltages in the stator windings. If a load is applied to the stator connectors a current will flow through them. This can be inspected in Simulation 1 below.

Simulation 1. PMSM in generator mode

BLDC drive theory

Similarly, to the PMSM the BLDC also has permanent magnets attached to its rotor. However, instead of a rotating field on the stator, the phases are subsequently abruptly energised to pull the rotor magnets forward. This results in a somewhat jerky motion of the rotor, which is filtered to some extent by the rotor and load inertia. The principle is illustrated in Fig. 5. In the first instance, the third inverter leg is idle while the current flows from the top switch of the first inverter leg through phase ‘a’ and phase ‘b’ in reverse direction and finally to the negative dc rail through the lower switch of the second leg. This corresponds to a south pole generated from phase ‘a’ and a north pole generated from phase ‘b’. This driver state is assumed once ‘H1’ hall sensor starts sensing the north pole of the rotor. Because of the construction of the stator and the rotor phase ‘a’ winding pulls the rotor north pole and pushes the rotor south pole away. This state is useful until just before the middle of the rotor south pole reaches the stator phase ‘b’ winding. At this instant H3 hall sensor starts sensing the rotor south pole and the drive configuration changes to the second state in Fig. 5. The currents through the windings are now such that the north pole is generated with winding ‘c’ rather than ‘b’, pushing the rotor north pole further along the stator inner circumference.

There are six such changes taking place in one revolution of the rotor, as shown on the right section of Fig. 5.

Figure. 5. BLDC motor operation principle

PMSM switch rating

When talking about a machine of certain power rating, it is assumed that we are talking about the mechanical power that the machine is capable of delivering on its shaft. For determining the switch rating of the drive, the input electrical power is needed. The difference between the input, electrical and the output, mechanical power are the losses incurring within the machine and drive. Throughout the machine, various losses appear due to magnetization, flow of electric current and mechanical movement of the rotor. These losses can be accounted for by the machine efficiency (η). Therefore, the electrical input power can be expressed as:

(Eq 1)  

The efficiency of the machine depends on the machine type and design quality. For induction machines of several hundred Watts it can go below 50%, while for high-power PMSMs it can reach 95%.

The input power is then expressed as the product of the phase voltage and current root mean square (rms) value:

(Eq 2)  

The number 3 signifies that the drive is three-phase, while the power factor (Pf) is a measure of displacement in time of the voltage and current sinusoidal waveforms. The power factor, a measure inversely indicating the proportion of energy needed for magnetisation of the machine, can also take a broad range of values. PMSM have lower magnetisation requirement and therefore higher power factor values compared to induction machines. They can be driven from unity down to 0.85 power factor.

An inverter is used to drive a PMSM with PWM output voltage. This is illustrated on Fig. 6. The output voltage can take values of 0 V or Vdc. By applying longer pulses of Vdc the average value of the output voltage is increased. As the target (reference) output voltage should be of a sinusoidal shape, with a negative and positive half-cycle, there is no other way of realising it than by adding a dc bias of Vdc/2 to the reference voltage. This will not transfer to the current flow, it will just raise the neutral point potential of the three-phase machine winding since the bias is applied to all three phases.

FIgure 6. Inverter leg with PWM output voltage

It is therefore clear that the maximal output voltage amplitude cannot be higher than Vdc/2. However, certain amount of third harmonic (and its multiples) can be added to the sinusoidal reference. Once again, these harmonics are applied to all three phases, raising the voltage of all three in the same manner and therefore no third harmonic current will flow. The third harmonic can be added in such a way that it decreases the maximum of the reference, allowing more headroom for the reference signal and increasing the modulation range (i.e. the maximum phase voltage applied) by an additional 15%. The same effect can be achieved by calculating the average between the minimum and maximum references (out of the three available) and adding it to all three reference signals. The described method can be studied within Simulation 2. If such reference signals are applied, the performance will be equivalent to space vector modulation.

Simulation 2. Min-max injection modulation method

As the rms voltage is √2 times smaller than the maximum voltage in sinusoidal waveforms, it can be obtained from the Vdc value as:

(Eq 3) 

Next, from (Eq 2) the current rms value can be expressed. Finally, the maximal value of the current is √2 higher than the rms value:

(Eq 4) 

The chosen switch should have at least this current rating. In practise an overload factor of at least 20% is added as well as a safety factor of another 100%. The highest voltage the switch is expected to block is the supply voltage, in cases when the other switch in the same leg is conducting.

BLDC switch rating

BLDCs are mostly aimed at mid-power range applications where machine construction costs are reduced, sacrificing some of the machine efficiency. 

As it is shown in Fig. 5 and its description, one of the three inverter legs is dormant while two are conducting. This means that the machine current along with a voltage up to Vdc/2 is applied to a single phase of the drive 2/3rd of the reference period. As there are three phases the input electric power can be expressed as:

(Eq 5) 

Considering that the current is not as uniform as seen in Fig. 5 a waveform derating factor (wf) of 20% is used to obtain the maximum current the switch shall bear.

(Eq 6) 

The maximum voltage that the switch should block is maintained at Vdc, as with the PMSM.

Table I presents a comparison of the required switch ratings for a 1 kW drive. As it can be seen, the required current values of the switches are similar. The values for the voltage and current rms for the BLDC can be obtained in a similar fashion as for the PMSM, with the ratio between the rms and maximal values being instead of and without the 15% increase due to third harmonic injection.

Table 1. Switch rating comparison for 1 kW drive
  PSMN BLDC Source
Pmeh 1 kW Application requirement
Vbat 48 V Application requirement
Pel 1.11 kW (η = 0.9) 1.17 kW (η = 0.85) (Eq 1)
Vrms 19.51 V 19.59 V (Eq 3)
Irms 21 A (pf = 0.9) 24.5 A (Eq 2) and (Eq 5)
Im 29.8 A 29.4 A (wf = 1.2) (Eq 4) and (Eq 6)

PMSM and BLDC losses calculation

The expected current and voltage that the switches will endure is calculated in the previous section. However, as it is usually the case, the choice of MOSFETs is more constrained by the amount of losses they are designed to endure. The amount of losses is influenced by design requirements (conducted current, switching speed and frequency) or cooling arrangements of the devices.

In this section an explanation of how to calculate these losses will be provided. It needs to be noted that usually at motor control applications the switching frequency is set to be as low as possible as there is no incentive to have it higher. Most applications settle at 20-30 kHz, in order to avoid audible frequencies. It is beneficial to have the switching at lower frequencies so that its harmonics fade out on the frequency axis by the frequency where regulatory requirements start. By having the switching frequency low, the switching losses are not of great relevance in motor control applications.

PMSM conduction losses

The PMSM motor current is sinusoidal, with a certain switching frequency ripple superimposed. Let the period of the sinusoidal control signal be noted with Tc, while the switching period with Ts.

The current in positive direction will flow through the top MOSFET in the positive control half-cycle (T/ 2) during the duty cycle δ in each switching interval Ts. In the negative control half-cycle (T/ 2) for a period (1-δ) Ts negative current will pass through the same switch. Since the top and bottom switches swap roles between control half-cycles (T/ 2) it can be concluded that during a whole control cycle (Tc) one control half-cycle worth of current passes through the switch. This discussion is illustrated in Simulation 3.

Simulation 3. PMSM drive switch current conduction.

The current direction is not relevant because the square of the current is sought. The overall conduction losses can be calculated as:

(Eq 7) 

Where the rms current value is of a half cycle, averaged over the whole cycle period:

(Eq 8) 

This is valid if the reverse voltage drop of the device is below the internal diode conduction threshold and dead-time is not accounted for. For a sinusoidal current with an amplitude Im, the conduction losses come to [1]:
(Eq 9) 

BLDC conduction losses

In BLDC drives the current flows through two inverter legs. In order to regulate the current flowing through the machine windings, at least one of the inverter legs needs to be modulated in order to maintain a desired current magnitude. When only one inverter leg commutates and the other is constantly conducting, the switching method is unipolar, when two legs commutate the switching method is bipolar, as shown in Fig. 7. The unipolar switching shown in Fig. 7 distributes the switching losses between the two FETs of an inverter leg. In both cases the upper and lower switch are being turned on in an alternating manner, to avoid diode loses in the synchronous FET.

Figure 7. Bipolar and unipolar switching of devices

For the conduction losses, the switching mode does not seem to have much influence. The required rms current through the individual switches is the same in both cases. In the bipolar switching mode, looking at the A+, switching at a certain duty cycle δ, a current of value I passes through it for a time δTs (Ts being the switching period) in the first half cycle. In the second half cycle A- is switched with duty cycle δ, while A+ is then switched on for (1- δ)Ts. Therefore, during the hole control cycle a single switch conducts the current equivalent of half a control cycle. Similar is the case with the unipolar switch mode, with the difference that half of the switching cycle the same switch conducts inherently.

Applying (Eq 8) for a constant current I passing through the switch for one third of the switching period, the resulting conduction losses come to:

(Eq 10) 

This conclusion applies when dead-times are very short and the current through the BLDC windings is well controlled to be close to DC with small ripples.

The unipolar method can be simplified, having only the top switches driven with PWM, while the bottom switch is turned on inversely for freewheeling. The respective bottom switches, belonging to the other conducting phase, are held constantly on during the time the current needs to flow through them. In this case uneven distribution of power losses is achieved in the top and bottom switches. The top switch is on for δTs. The bottom switch conducts when it is freewheeling for (1- δ)Ts and for an additional third of the control period when it is held completely on. In this case the integral from (Eq 8) results in:

(Eq 11) 

(Eq 12) 

A simulation for this method is provided in the next section. Due to unequal switch utilisation this method is not discussed further.

In all the switching methods, the diode of the FETs will need to demagnetise the motor phase that stops conducting. The energy accumulated in the phase inductance will therefore be dissipated in each FET diode in each control cycle:

(Eq 13) 

Where L is the machine phase inductance.

Switching losses

The switching energy losses can be estimated as:

(Eq 14)

Where tsw can be approximated by:

 

(Eq 15)
Figure 8. Reading Ion and Vpl(Ion) from the transfer characteristic

Where tsw is the switching time, Ion is the on-state current, Vgd is the gate drive voltage, and RG is the gate resistance. QGD – gate to drain charge and Vpl(Ion) – gate plateau voltage at current Ion, can be read from the data sheet: QGD  from tables and Vpl(Ion) from the transfer characteristic graph (Fig. 8).

In itself, QGD accounts for the voltage transient during the Miller plateau. The current transient that occurs before (turn on) or after (turn off) the Miller plateau is determined by part of QGS. It is accounted for by an approximated increase of the voltage transient by an additional 20 to 30%, represented by the scaling factor sf (sf takes value from 1.2 to 1.3). This percentage is dependent on technology used. The approximation is sufficient here as the switching losses are not expected to dominate because of the low switching frequency. The real switching losses estimates should come from simulations.

The on-state current is the average current in the case of the switching losses. For PMSM the average is calculated for half of the control cycle:
(Eq 16) 

This value can therefore be substituted in (Eq 14) instead of Ion to obtain the switching energies. It is considered that the current ripple is negligible compared to the base value.

The power is then obtained by multiplying the energy values with the number of times a switching occurs during a control half cycle 0.5×fsw/fcc, as the switching losses are negligible when the current through the switch is negative.

(Eq 17) 

In case of the BLDC the switching occurs around I, which needs to be placed in (Eq 14):

(Eq 18) 

The obtained energy levels then need to be multiplied once again with the number of switching occurring in one half of the control period. Due to the device switching only 1/3rd of the half-cycle (Fig. 7 – Unipolar switching) this is expressed as 1/3 × 0.5 × fsw/fcc.

(Eq 19) 

The switching at the negative half cycle is not accounted for in both cases as it is governed by diode switching and it can be omitted. The reason for this is that by the nature of the diode the voltage across it needs to decrease to nearly zero before it can take on any current, achieving nearly zero voltage switching. The diode also cannot start increasing the voltage across its connectors until the current has stopped flowing through it.

Switch selection

As noted, MOSFETs are usually chosen according to the amount of loss they are intended to dissipate.

Based on low switching frequency – 20 kHz is chosen – the conduction losses are expected to be dominant. At this point switching losses are estimated as 50% of conduction losses in PMSMs and 20% in BLDCs. With an allowance of 1.5% losses in the six switches the required RDSon can be calculated from (Eq 9) and (Eq 10) as shown in (Eq 20) and (Eq 21), respectively. The maximum expected current amplitude can be read from Table 1:

(Eq 20) 

(Eq 21) 

This results in a RDSon of 8.3 m? for PMSM and 8.5 m? for the BLDC. To allow for some headroom the BUK7Y7R8-80E is chosen. This is an automotive, 7.8 m?, 80 V, trench 6 technology MOSFET. The drain current of this MOSFET is given as 100 A, roughly 3 times higher than the maximum current needed for the application. This is usual and expected, as the ID rating of the MOSFETs is measured with its mounting base temperature held at 25℃. Table 2 gives an overview of the expected switch performance for a gate drive voltage of 10 V and a gate resistance of 22 ?.

Table 2. Expected switch performance
  PSMN BLDC Source
Switch BUK7Y7R8-80E,

RDSon (typ) = 5.8 m?; VDS = 80 V; I= 100 A, QGD = 17 nC

Data sheet
Pcond 1.29 W 1.16 W (Eq 9) and (Eq10)
Ion 9.94 A 24.5 A (Eq 16) and (Eq18)
Vpl(Ion) 4.7 V 5 V Data sheet  / Fig 8.
tsw_on, tsw_off 88 ns, 99 ns 19.59 V (Eq 15)
Eon+ Eoff 21 µJ, 23 µJ 55 µJ, 55 µJ (Eq 14)
Psw 476 mW 375 mW (Eq 17) and (Eq 19)
Ploss 1.77 W 1.54 W Pcond + Psw

PMSM and BLDC simulations

In this section the simulations for the PMSM (Simulation 4) and BLDC (Simulation 5 and Simulation 6) drive losses are shown. In all simulation switches for one inverter leg have been monitored for energy losses. The electrical motor has been represented by its back EMF, phase resistance and leakage inductance. In the case of the PMSM only one inverter leg is modelled. For the BLDC simulation the switches in the two other inverter leg are replaced by ideal switches to shorten simulation time.

The total energy losses, the MOSFET conduction, turn on and turn off losses are then plotted and their end values displayed. These values should be divided by the simulation length (20 ms) to obtain the results from Table 2. The results from simulation and calculations are compared in Table 3. Simulation 6 is not included in the comparison as the top and bottom switches have a different losses distribution between conduction and switching losses.

 

Table 3. Simulated switch performance
  PSMN BLDC
  Simulation results Theoretical results Simulation results Theoretical results
Switch BUK7Y7R8-80E,

RDSon (typ) = 5.8 m?; VDS = 80 V; I= 100 A, QGD = 17 nC

Vcond 26.6 mJ / 20 ms = 1.33 W 1.29 W 23.8 mJ / 20 ms = 1.19 W 1.16 W
Psw (3.5 mJ + 7.8 mJ/ 20 ms = 565 mW 476 mW (2.7 mJ + 4.3 mJ) / 20 ms = 350 mW 375 mW
Ploss 1.89 W 1.77 W 1.54 W 1.535 W

Simulation 4. PMSM simulation with loss estimation

Simulation 5. BLDC simulation with loss estimation; unipolar modulation; all switches PWM modulated.

Simulation 6. BLDC simulation with loss estimation; unipolar modulation; top switches PWM modulated, bottom switches kept on

Summary

In this interactive application note an overview of electrical machine use in vehicles has been given, including a more detailed look into PMSM and BLDC operating principles. A simple switch selection and switch loss estimation is provided along with simulations to verify the calculations.

References

[1]        J. W. Kolar, H. Ertl and F. C. Zach, "Influence of the modulation method on the conduction and switching losses of a PWM converter system," in IEEE Transactions on Industry Applications, vol. 27, no. 6, pp. 1063-1075, Nov.-Dec. 1991, doi: 10.1109/28.108456.

Page last updated 05 October 2022.
绝顶人妻中文字幕精品一区| 日韩欧美一级精品久久| 亚洲av二三四五又爽又色又色| 美女主播视频福利一区二区| 精彩视频尤物视频在线| 少妇人妻与黑人精品免费视频| 五月婷婷在线直播视频免费观看| 亚洲人尤物视频在线观看| 久久午夜无码鲁丝片午夜精品| 国产免费啪嗒啪嗒视频看看 | 少妇厨房愉情理伦片视频在线观看| 国产激情一区二区激情| 亚洲一级毛片免费在线观看| 亚洲日本国产乱码va在线观看| 日韩色视频一区二区三区亚洲| 国产欧美成人精品一区二区| 男人的天堂av免费社区| 国产在线观看码高清视频| 北海莫菲尔国际精品酒店| 国产又色又爽又黄的视频多人| 无码无羞耻肉3d动漫在线观看 | 国产日韩精品专区免费| 国产日韩在线一二三区| 91亚洲欧美综合高清在线| 久久精品熟女亚洲av天美| 大大大长屌姓交口交观看| 久久精品亚洲国产日韩| 大肉棒猛插小逼太爽了视频| 男人下面插入女生下面啊啊啊视频 | 美日韩一级片欧美一级片| 91精品极品在线免费观看| 亲少妇摸少妇和少妇啪啪| 欧美一级久久精品费色a| 成人依依网站亚洲综合久| 正在播放国产呦精品系列| 香蕉久久夜色精品国产不卡| 亚洲国产午夜福利视频| 欧美高清精品视频在线| 日本高清一区二区欧美| 欧美欧美欧美欧美在线| 在线观看日本一区二区三区四区| 欧美日韩另类精品激情| 91男厕偷拍男厕偷拍高清| 北海莫菲尔国际精品酒店| 日韩一区二区三区免费视频| 99爱在线精品视频免费观看9| 99久久精品99久久精品视频| 五十老熟女高潮嗷嗷叫| 韩国三级一区二区三区| 啊啊啊啊啊啊啊啊操我啊啊啊免费| 无码少妇一级av片在线观看| 手机免费av片在线观看| 祼体美女上厕所被操视频APp| 国产激情一区二区激情| 97精品伊人久久大香| 欧美激情日韩精品久久久| 国产va免费精品观看精品视频| 国产亚洲一区二区视频在线| 久久精品国产在热亚洲| 夫妻性生活视频在线直播| 国产亚洲精品成人av一区| 寂寞少妇让水电工爽了一| 欧美精品久久久天堂一区| 色眯眯日本道色综合久久| 啊啊啊逼逼好痒啊啊视频| 久久久国产精品1区2区| 国内精品久久人妻白浆| 国产精品一级二级三级视频| 中文字幕久久久人妻人区| 美女大奶子大鸡巴操逼喷水| 日本免费一区二区三区视频在线播放| 亚洲一区二区天堂在线| 久久综合九色综合本道| 丰满女人床上激情久久| 午夜亚洲理论片在线观看| 欧美激情视频一区 二区| 91精品国产福利在线观看你| 国产免费成人在线观看视频| 国产在线观看黄av免费| 天堂av一二三区在线播放| 成人三级在线播放线观看| 国产综合永久精品日韩| 亚洲人尤物视频在线观看| 撕开奶罩揉吮奶头大尺度视频| 国产亚洲一区二区视频在线| 国产男女猛进猛出粗暴啊| 在线日韩AV免费永久观看| 蜜臀在线观看免费视频| 91国产自拍在线一区| 日本女同学在工作里小媳妇操逼逼 | 美日韩精品一区三区二区| 美日韩一级片欧美一级片| jk黑丝白丝国产精品| 国产乱码精品一区二区三区播放| 国产麻豆剧传媒免费观看| 正在播放女子高潮大叫要| 俄罗斯美女扒开B口B毛男人玩吗| 日本剧情片在线播放网站| 亚洲人妻一区二区久久| 国产三级在线观看官网| 国产鲜肉帅哥大鸡巴操美女逼内射| 搜索黑人性欧美大战久久| 这里都是精品熟女内射| 亚洲精久久久久久无码精品| 欧美日韩国产福利在线观看| 欧美日韩人妻精品一区二区在线 | 美女很黄很黄的视频免费| 大鸡巴操大人体逼的视频| 另类艳情双性人妖视频网站| 国产精品久久久久久妇女免费| 亚洲AV永久无码精品蜜芽| 久久精品 国产精品香蕉| 黄色段片一区二区三区| 精品一区二区三区久久| 久久久久久无码精品大片| 久久精品国产欧美电影| 三级片无码高清免费国产| 国产精品中文字幕日韩精品| 日韩亚洲在线观看视频| 成人福利在线免费观看视频| 寂寞少妇让水电工爽了一| 男人的天堂一级毛片视频| 在线观看亚洲欧洲精品| 人妻少妇精品视频中文字幕免费| 在线人妻无码中文dvd视频| 骑乘少妇喷水高潮69av| av网站在线观看亚洲国产| 精品亚洲456在线播放| 韩国免费A级毛片久久不卡片| 国产偷国产偷亚洲高清| 国产精品色多多在线观看| 伊人天堂午夜精品草草网| 男人把女人捅到爽爆免费视频| 成人精品一区二区三区不卡| 精品色欲久久久青青青人人爽| 青青草青青草在线观看视频| 欧美人妻精品一区二区三区99| 公车好紧好爽再搔一点浪一点| 欧美日韩午夜在线一区| 欧美日韩欧美性生活视频| 亚洲黄片在线播放视频| 久久久午夜福利免费视频| 白白色手机免费在线视频| 国产精品超碰在线97| 亚洲av人片乱码色午夜| 日本人妻免费在线观看| 国产成人无码区免费AV片蜜臀| 日韩欧美一级特黄大片| 亚洲熟妇熟女久久精品一区| 91精品综合国产蜜臀久| 51短视频精品全部免费| 激情春色欧美激情国产剧情| 男人和女人插插视频免费看| 色橹橹欧美在线观看视频高清免费| av网站在线观看亚洲国产| 国产99久久精品一区二区300| 亚洲AV永久无码精品蜜芽| av在线中文字幕乱码| 日本黄色一区二区三区| 在线播放日本国产精品| 色综合久久久久综合体| 99视频在线观看免费的| 国产一区二区三区粉穴| av电影日韩在线播放一区二区三区| 国产精品免费视频播放不卡| 国产精品亚洲综合第一区| 日韩一区二区三区免费视频 | 在线视频自拍日韩精品一区| 人妻在线有码中文字幕| 四虎国产永久免费视频| 久在线观看视频在线观看免费| 国产视频一区二区三区免费看| 久久99这里只有免费费精品| 日本老师做三 片乱码视频| 国产91精品系列在线观看| 无码无羞耻肉3d动漫在线观看| 性感骚女爆射搞基喷水操软件下载| 九九热最新免费在线观看| 欧美日韩中文亚洲v在线综合| 国产av天堂久久精品| 最新av国产在线播放| 懂色av噜噜一区二区| 亚洲av日韩av高清在线播放| 中文字幕久久久人妻人区| 色欲天综合久久久无码网中文 | 国产精品欧美国产精品| 国产亚洲精品久久久久久无| 男生用鸡鸡捅女生屁股免费视频| 久久免费亚洲免费视频| 午夜福利观看在线观看| 成人久久av一区二区| 久久午夜av一区二区| 9久热久re爱免费精品视频| 日韩中文字幕在线视频免费观看| 未满十八网站在线观看| 搡女人真人视频不用下载| 女生尿洞被男生捅的视频| 中文字幕有码人妻在线| 国产精品天干天干在线下载| 国产精品国产午夜免费看| 91豆麻精品91久久久久久 | 日韩av天堂手机在线观看| 女性下体被男性猛进猛出的视频| 欧美成人午夜福利影院| 国产在线精品一区二区三区不| 在线观看日韩一区二区视频| 色偷偷的亚洲男人的天堂| 情色中文字幕在线观看| 精品久久只有精品做人人| 少妇人妻与黑人精品免费视频 | 欧美精品午夜福利不卡| 国产人妖免费在线观看| 天堂a免费视频在线观看| 日韩欧美一级精品久久| 91九色成人在线观看| 日韩A级毛片免费视频播放| 想高潮插逼逼免费观看视频| 在线观看免费完整版日本| 国产欧美成人精品一区二区| 看男生和女生插小鸡鸡的软件| 免费成人在线不卡视频| 久久久久久久久久久久性高潮| 国产欧美又粗又长又爽| 男人大鸡巴插进美女逼里视频强奸 | 我要大鸡吧在线观看免费| 日本高清中文字幕免费二区| 91精品久久午夜大片| 高清女厕偷拍一区二区三区| 大鸡巴插入少妇骚穴视频| 美女被草视频免费网站| 国产高清白丝在线观看| 国产成人久久精品麻豆一区 | 91国产自拍在线一区| 日韩欧美黄片在线播放| 一本色道久久88综合日韩| 国产精品午夜免费福利| 国产天堂av在线免费观看| 伊人久久综合大杳蕉中文无码| 国产精品高清在线播放| 精品一区二区三区久久| 日本黄大片538视频| 成人性爱大阴茎视频高甜| 国产传媒小视频在线观看| 四虎永久在线精品视频观看| 激情五月天丁香啪啪综合| 中文字幕人妻少妇久久| 国产精品为爱搞点激情| 四虎精品视频永久免费| 天堂av毛片免费在线看| 扫码观看视频的二维码怎么生成| 亚洲一区二区三区网址 | 男人把鸡鸡捅进美女屁骨里| 国产综合色在线视频观看| 好吊视频免费在线观看| 精品国产三级国产普通话| 超大鸡巴操处女小骚逼免费视频 | av日韩精品在线播放| 手机免费av片在线观看| 99国产精品九九视频免费看| 亚洲国产欧洲综合997| 亚洲综合色成人影院| 亚洲一区二区二区久久成人婷婷| 三级电影在线观看不卡| 国产一区二区三区二区| 色综合天天综合网天天| 国产激情一区二区激情| MM1313亚洲精品无码久久| 亚洲一区精品二人人爽久久| 丰满美女性爱在线视频看看| 爽爽午夜福利视频一区二区| 九九在线精品亚洲国产涩爱| 欧美亚洲区一区二区三区| 亚洲精品不卡一二三区| 9久精品久久综合久久超碰1| 我要看国产的日逼的视频| 欧美成人一区二区三区高清| 午夜精品成人内射人妻| 国产一区二区三区三洲| 在线播放免费人成日韩视频| 亚洲va久久久久久久精品综合| 免费黄色大片在线观看| 99爱在线精品视频免费观看9| 国产郑州性生活免费| 97精品伊人久久大香| av午夜精品一区二区三区 | 国产精品亚洲欧美久久| 大鸡巴插学生妹骚逼视频| 97精品国产自产在线观看永久| 天堂av毛片免费在线看| av男人在线东京天堂| 九九热6这里只有精品视频| 黑丝视频在线播放91| 国产蜜臀大码av影院| 国产精品美女性感视频一区二区| 久久精品国产亚洲av影片| 日韩情色电影中文字幕| 久久精品国产欧美电影| 色吊丝最新永久免费观看| 91久久精品美女高潮喷白桨| 成人经典视频免费在线| 国产主播精品一区二区三区| 嗯啊男人捅女人小穴视频| 国产精品午夜久久久久久久密桃| 免费99精品国产自在现线丫| 搡女人真人视频不用下载| 国产在线观看黄av免费| 亚洲一区二区三区精品久久av| 99爱在线精品视频免费观看9| 免费国产高清在线观看最新| 国产性色av一区二区| 欧美日韩另类精品激情| 亚洲黄色成人av在线电影| 情产国品久久久久久久9999 | 精品国产av一区二区三区蜜臀| 成人性爱大阴茎视频高甜| 大鸡巴操美女骚逼嫩穴视频| 亚洲天堂一区二区免费不卡| 黄色网色网色网色网色| 久久久久亚洲av成人网热| 操逼激情破处大鸡吧插进| 亚洲精品一区二区成人精品网站| 男人大鸡巴日逼视频免费| 久久久国产综合av天堂| 中文人妻av一区二区| 我要看外国女生操逼逼的视频| 美女被鸡巴插入喉咙视频在线| 国产免费人成视频尤物| 国产精品青青爽在线观看| 亚洲一区二区黄色录像| 两个人免费观看日本的完整版| 欧美日韩另类精品激情| 正在播放国产呦精品系列| 日韩精品在线视频vvv| 免费无码va一区二区三| 天天综合天天添夜夜添狠狠添 | 久久久国产综合av天堂| 精品欧美激情一区二区三区| 加勒比一道本在线观看| 人人爽人人澡人人人人妻| 亚洲精品一区二区成人精品网站| 欧美一区二区三区最新| 成年女人午夜毛片免费视频| 精品国产一区二区三区卡| 美女张开腿让男人桶到爽裸体| 精品人妻伦九区久久69| 夜夜躁日日躁狠狠久久av乐播| 综合激情五月三开心五月| 欧美a级黄色中文字幕手机在线| 欧美日韩欧美性生活视频| 最新精品亚洲成a人在线观看| 欧美一级久久精品费色a| 欧美大鸡巴猛插肥婆视频| 亚洲国产午夜福利视频| 91精品国产美女福到在线不卡| 成年大片在线免费播放| 国产精品视频免费自拍| 成人无码av片在线观看蜜芽 | 中文字幕乱码一区久久麻豆蜜芽 | 欧美人妻精品一区二区三区99| 成人无码av片在线观看蜜芽| 日韩黄片毛片在线观看| 国产成+人+亚洲+综合| 太大太粗好爽受不了视频| 色婷婷五月综合亚洲大全在线观看| 婷婷精品国产一区二区| 国产精品91福利一区二区三区| 深夜福利一区二区在线观看| 天堂丝袜人妻中文字幕在线| 日韩精品一区二区三区视频放| 色婷婷婷丁香亚洲综合| 啊用力快点我高潮了视频| 香蕉久久精品日日躁夜夜躁| 国产精品大片在线播放| 激情一区二区三区四区| 51短视频精品全部免费| 亚洲香蕉大尺码专区在线直播| 亚洲人尤物视频在线观看| 成人国产激情自拍视频| 日本欧美高清乱码一区二区| 男生把小鸡鸡插到女生阴巢的视频| 乱淫一区二区三区麻豆| 大学生高潮无套内谢免费视频| 国产91手机在线播放青青| 猛男人插女人逼里面操逼| 91九色成人在线观看| 日产乱码一二三区别免费| 超碰插你激情免费在线| 成人午夜福利视频网址| 国产黄色网页在线观看| 88v中文字幕熟女人妻一区| 欧洲老太太肛交内射视频| 欧美一级久久久久久国产| 无遮挡18禁啪啪羞羞漫画| 久久久无码精品亚洲日韩18禁| 色偷偷人人澡久久超碰91蜜臀| 91综合在线国产精品| 国产精品色多多在线观看| 国产熟女激情视频自拍| 欧美三级视频一区二区三区| 美日韩一级片欧美一级片| 巨乳av在线免费观看| 麻豆精品人妻一区二区三区99| 欧美成人三区四区在线观看| 五月婷婷六月丁香深爱| 久久精品亚洲国产日韩| 三级片无码高清免费国产| 人妻在线有码中文字幕| 国产草莓视频无码a在线观看| 日韩精品视频观看专区| 嗯啊啊大鸡巴快用力肏我视频| 俄罗斯美女扒开B口B毛男人玩吗| 视频一区中文字幕在线观看| 国产精品国产三级国产av闹| 国产亚洲一区二区视频在线| 在线观看亚洲欧洲精品| 亚洲乱码中文欧美第一页| 少妇人妻与黑人精品免费视频| 欧美人与禽交片在线观看| 国产性色av一区二区| 国产av天堂久久精品| 男人大鸡巴日逼视频免费| 中文人妻无码一区二区三区在线| 深夜福利av在线播放| 九九热最新免费在线观看| 国产在线精品一区二区三区不| 日韩天堂视频在线播放| 中文人妻av一区二区| 亚洲狠狠丁香综合一区| 春色校园激情综合另类| 美日韩精品一区三区二区| 色吊丝最新永久免费观看| 久久久无码精品亚洲日韩18禁| 欧美日高清视频在线观看| 欧美人妻一区二区三区88av| 久久久久久无码精品大片| 色综合久久久久久久粉嫩| 国内精品久久久久久一区二区| 日韩在线一区精品视频漫画| 久在线观看视频在线观看免费| 鸡鸡插屁股视频日韩在线免费观看| 99re7在线观看国产精品| 未满十八禁止在线播放| 美女国产黄色三级片在线播放 | 91在线免费在线观看| 国际b站免费直播入口MBA智库| 国产精品亚洲综合图区| 蜜桃99视频在线观看| 美国黑人大屌操白美女小逼逼| 老司机永久在线免费看视频| 亚洲欧美另类日韩精品 | 天堂丝袜人妻中文字幕在线| 男生大肉捧插女生的视频| 日韩 国产 精品 亚洲 欧美 | 亚洲国产成人精品一区91| 男生把坤巴放进女生屁屁| 黑人巨大精品欧美完整版| 精品国产一区二区三区卡| 久久精品人妻少妇区二区| 五月天丁香婷婷狠狠狠| 国产日韩精品专区免费| 中国无码AV看免费大片在线 | 极品人妻手机视频在线| 国产在线观看黄av免费| 少妇厨房愉情理伦片视频在线观看 | 在线亚洲91成人在线视频视频| 好吊妞人成视频在线观看| 午夜福利十八周岁成人| 精品国产高清中文字幕| 美女大奶子大鸡巴操逼喷水 | 亚洲一区二区三区中文| 久久久久久无码精品大片| 欧洲老太太肛交内射视频| 国产精品久久久久久妇女免费| 蜜桃久久精品一区二区| 国产成人av在线观看| 九九在线精品亚洲国产涩爱| 美女高潮潮喷冒白浆免费视频 | 赿南美女拳交操逼视频大片| 国产日本草莓久久久久久| 国产麻豆剧传媒免费观看| 色婷婷综合五月在线观看| 18禁止免费网站免费观看| 激情五月天亚洲日婷婷| 无码不卡免费中文字幕在线视频| 无码a级毛片免費视频内谢| 亚洲精品国产成人综合免费| 午夜福利十八周岁成人| 久热这里只有精品视频4| 蜜臀视频免费国产在线视频| 亚洲天堂一区二区免费不卡| 国产综合亚洲欧美日韩在线| 久久久无码精品亚洲日韩18禁 | 在线人妻无码中文dvd视频 | 国产超碰天天爽天天做天天添| 男生把坤巴放进女生屁屁| 日韩成人福利在线视频| 精品国语自产拍在线观看| 日韩成人福利在线视频| 亚洲一区日韩二区精品| 男的鸡插进女的逼免费视频| 无码吃奶揉捏奶头高潮视频 | 最新av国产在线播放| 久久久久久一区二区三区四区别墅 | 国产精品国产三级国产av闹| av精彩天堂在线观看| 东北少妇自拍高潮喷水| av精彩天堂在线观看| 黄色av网站一区二区三区| 亚洲精品中文有码字幕| 波兰中年妇女B操B视频| 日本东京热av在线观看| 欧美逼逼一区二区三区| 精品欧美激情一区二区三区 | 日韩成人a片一区二区三区| 亚洲一区精品二人人爽久久| 亚洲男人天堂在线免费| 激情春色欧美激情国产剧情| 国产91手机在线播放青青| 中文字幕日韩精品免费看| 国产精品区第二页尤自在拍| 亚洲欧美另类丝袜在线| 看日逼的看日逼的看日逼的看日逼 | 久在线观看视频在线观看免费| 亚洲熟女乱一区二区精品成人| 奇米777狠狠色噜噜狠狠狠| 久久免费亚洲免费视频| 免费国产国语一级特黄aa大片| 男人用鸡巴插女人视频下载| 另类艳情双性人妖视频网站| 伊人久久大香线蕉亚洲av| 国产日韩精品专区免费| 色综合久久久国产精品| 国产亲近乱来精品视频| 日韩欧美亚洲国产精品幕久久久| 美女被大鸡巴插男内射欧美| 国产av天堂久久精品| 亚洲精品一区二区成人精品网站| 国产aa视频一区二区三区| 无码不卡免费中文字幕在线视频| 日韩在线一区精品视频漫画| 最近日本免费播放视频午夜 | 神马午夜伦理精品亚洲| 欧美日韩亚洲重口另类| 日本高清视频不卡一区二区| 亚洲国产免费一区二区| 人妻视频在线一区二区三区| 天天干天天操天天射嘴里| 亚洲欧洲av午夜精品| 99热这里只有精品网站| 欧美成人综合在线观看视频| 厕所偷拍一区二区三区| 久久久久亚洲av成人网热| 亚洲一区二区黄色录像| 亚洲精品一区二区久久| av在线中文字幕乱码| 亚洲AV无码一区二区三区五月天| 国产一卡在线免费观看| 人妻中文字幕有码在线视频| 人妻激情人妻交换一区| 肉棒插小穴视频你懂得分享| 午夜亚洲精品中文字幕| 在线免费观看日韩av| 午夜福利宅福利国产精品| 亚洲综合色成人影院| 国产一级a级高清性较视频| 91日本精品免费在线视频| 女国产精品视频一区二区三区| 亚洲av日韩av天堂无码| 久久久久久曰本av免费免费看| 国产日本亚洲一区二区| 中文人妻无码一区二区三区在线| 成人免费在线视频日韩| 亚洲综合色成人影院| 精品国产一区二区三区蜜殿最| 插逼咬奶头流白浆喷尿视频| 国产超级碰碰人在线播放| 国产精品九色蝌蚪自拍| 亚洲五月婷婷中文字幕| 国产免费av片在线观看| 欧美日韩一区二区成人在线| 老司机永久在线免费看视频| 超碰插你激情免费在线| 国产精品久久久久久妇女免费| 欧美一区二区三区播放| 美国俄罗斯毛片一区二区| 在线免费看黄国产精品| 中文字幕黄色片在线观看| 亚洲黄色成人av在线电影| 国产一级性生活片免费观看| 国产无遮挡又爽免费视频| 女生尿洞被男生捅的视频| 国产日本亚洲一区二区| 男生操女生的逼视频海量免费| 国产欧美日韩综合精品二区| 欧美日韩免费r在线视频| 欧美性生活欧美性生活| 日本一区二区高清视频在线观看| 色综合天天综合网天天| 亚洲中文在线视频观看| 丁香激情综合网激情五月| 国产尤物av一区在线| 骑乘少妇喷水高潮69av| 色偷拍亚洲偷自拍视频| 欧美情欲片一区二区三区| 欧美黄色成人在线电影| 92午夜福利在线视频| 国产精品自在在线午夜精华在线| 淫妇小穴好爽啊出水视频| 日韩在线观看免费av| 亚洲三级成人一区在线| 手机在线免费观看亚洲黄色av| 国产裸体美女永久免费无遮挡| 国产黄片久久免费观看 | 精品日韩一区二区三区| 五月婷婷六月丁香深爱| 日本视频一区二区免费在线观看 | 久久精品中文字幕一二三| 日韩一区二区三区东京热| 男人天堂一区二区av| 可以在线观看的黄色av| 国产综合精品一区二区| 午夜老湿机福利免费观看| 国产熟女一区二区三区四区| 性生活在线免费观看小视频| 九九在线精品亚洲国产涩爱| 国产精品免费视频播放不卡| 成年免费A级毛片天天看| 一卡二卡精品在线免费| 色综合久久久中文字幕波多| 国产学生粉嫩在线观看在| 日韩AV无码免费看久久久| 在线亚洲91成人在线视频视频| 精品中文字幕一级久久免费 | 中国一级做a爰片久久毛片| 中国一级毛片免费看视频| 东北少妇自拍高潮喷水| 日本黄大片538视频| 成人亚洲av免费在线| 人人妻人人爽人人澡av毛片| 亚洲日本乱码一区二区| 中文字幕av无码不卡二区 | 中国一级全黄的免费观看| 大鸡插黄在床上做运动不遮掩| 国产一区二区精品播放| 国产精品亚洲欧美久久| 久久久亚洲国产精品一区| 男女男精品视频免费体验| 中文字幕激情av电影| 久久午夜av一区二区| 日韩在线精品国产一区二区| 国产蜜臀av在线一区在线| 国产无遮挡又爽免费视频| 国产黄色性生活一级片| 最新av国产在线播放| 999国产精品永久免费视频| 玖玖热在线视频免费观看| av电影日韩在线播放一区二区三区| 少妇厨房愉情理伦片视频在线观看| 一区二区三区婷婷中文字幕| 鸡鸡插屁股视频日韩在线免费观看 | 婷婷精品国产一区二区| 亚洲熟女av一区二区三区| 国产农村av对白观看| 亚洲AV无码一区二区少妇| 看蓝色的鸡巴搞进去女人的逼里面| 隔壁人妻欲求不满中文字幕| 国产在线精品一区二区三区不 | 香蕉久久夜色精品国产不卡| 国产蜜臀大码av影院| 亚洲欧洲日?国码久在线| 激情一区二区三区四区| 91九色成人在线观看| 大香蕉在线大香蕉在线大香蕉在线| 性生活视频在线观看视频| 国产视频三区二区在线观看| 久久亚洲天堂av丁香| 黄色视频一边摸上面一边插下面| 日本人妻免费在线观看| 情色中文字幕在线观看| 久久国产一级黄色片子| 十八禁网站免费在线观看| 国产日本亚洲一区二区| 色偷偷人人澡久久超碰91蜜臀 | 午夜影院1000在线免费观看 | 国产精品久久久久婷婷五月| 亚洲精品一区二区毛豆| 日本黄色中文字幕不卡在线| 黄色顶级男和女性视频毛视频 | 在线观看亚洲欧洲精品| 亚洲熟女国产午夜精品| 天堂丝袜人妻中文字幕在线 | 日韩欧美人妻之中文字幕| 精品国产一区二区三区卡| 可以免费看的欧美黄片| 国产二级一片内射视频| 国产午夜福利导航在线| 91精品久久午夜大片| 另类艳情双性人妖视频网站| 懂色av噜噜一区二区| 99热这里全部都是精品| 国产精品v日本精品v欧美精品| 欧美日韩国产一区二区的| 午夜99精品一区二区三区| 国产精品人妻熟女av| 在线免费看片国产精品| 国内少妇人妻精品视频| 国产精品久久久精品免费| 男人把鸡鸡捅进美女屁骨里| 性夜国产夜春夜夜爽三级| 日本黄色中文字幕不卡在线| 国产综合亚洲欧美日韩在线| 日韩毛片资源在线观看| 久久午夜av一区二区| 欧美成人高清视频性生活| 激情毛片av在线免费看| 日本熟妇内射一区二区| 亚洲中文字幕有码视频 | 亚洲人人妻人人爽av| 亚洲婷婷熟妇熟女在线| 美女张开腿让男人桶到爽裸体| 丰满人妻连续中出中文字幕在线 | 看日逼的看日逼的看日逼的看日逼| 色眯眯日本道色综合久久| 男人天堂一区二区av| 天天干天天操天天射嘴里| 久久精品国产亚洲夜色av| 精品亚洲456在线播放| 强奷漂亮的护士中文字幕| 正在播放干肥熟老妇视频| 日韩黄片毛片在线观看| 亚洲乱码中文欧美第一页| 欧美人妻精品一区二区三区99| 嗯啊啊大鸡巴快用力肏我视频| 国产黄片久久免费观看 | 色婷婷婷丁香亚洲综合| 午夜99精品一区二区三区| 日本熟妇内射一区二区| 大鸡巴厂长狂操女人的无毛小逼| 国产美女极度色诱视频| 波多野结衣在线观看一区二区三区 | 精品国产高清中文字幕| 欧美熟妇另娄久久久久久 | 美日韩成人av免费久久| 亚洲狠狠丁香综合一区| 欧美日韩亚洲重口另类| 看男生和女生插小鸡鸡的软件| MM1313亚洲精品无码久久| 午夜伦理视频免费观看| 日本高清少妇一区二区三区| 丰满熟女少妇一区二区三区| 日本一区二区免费在线不卡| 办公室娇喘的白丝老师在线看| 无码人妻精品丰满熟妇区| 国产精品久久久久婷婷五月| 亚洲一区二区二区久久成人婷婷| 国产精品一区二区三区欧美| 中文人妻熟妇精品乱又伧老牛在线 | 成年免费A级毛片天天看| 淫妇小穴好爽啊出水视频| 在线观看男人鸡桶女人的| 欧美精品午夜福利不卡| 日韩欧美亚洲国产精品幕久久久| 国产精品久久久精品免费| 大鸡巴暴草美女的小骚逼|