操逼啊口爆啊rrr中途啊免费-中文字幕av网一区二区-中文字幕久久精品波多野结百度-国产三级视频在线观看

雙極性晶體管

二極管

ESD保護、TVS、濾波和信號調(diào)節(jié)ESD保護

MOSFET

氮化鎵場效應(yīng)晶體管(GaN FET)

絕緣柵雙極晶體管(IGBTs)

模擬和邏輯IC

汽車應(yīng)用認(rèn)證產(chǎn)品(AEC-Q100/Q101)

IAN50019 - Thermal boundary condition study on MOSFET packages and PCB substrates

This interactive application note explains the boundary condition study performed to evaluate the thermal performance of various Nexperia MOSFET Packages and PCB Substrates. The results from measurements and simulations obtained in the study led to the creation of PCB Cauer models, which users can utilise in circuit simulators alongside Nexperia electrical and precision electrothermal models.

Author: Christopher Liu, Applications Engineer, Manchester

This interactive application note contains an embedded Cloud based simulation to augment the text.

To open the embedded simulation, simply hover over the simulation image. Left click anywhere in the graphic area once the central play button changes in colour. This opens the schematic in the Cloud environment. See the interactive application note tutorial page for more details on how to use the simulations.

See related application note: AN90013 LFPAK MOSFET thermal design guide

 

Download AN50019

1. Introduction

Power MOSFETs provide efficient conversion and supply of power in a wide variety of automotive, industrial and consumer applications. However, no MOSFET is 100% efficient and as such they exhibit three types of power losses during normal operation:

  • Switching losses during the transitional phase, see Fig 1.
  • Conduction losses during the on-state, see Fig 1.
  • Avalanche losses if breakdown voltage is exceeded when driving an inductive load, see Fig 2.

Figure 1. MOSFET turn-on waveforms


Figure 2. MOSFET turn-off avalanche waveforms

The culmination of these power losses can result in thermal overstress and failure of the MOSFET if not sufficiently accounted for in a PCB design. Therefore, it is necessary to consider thermal analysis during the design cycle to ensure the MOSFET does not exceed its maximum operating temperature. The parameter which gives the user the most relevant indicator of MOSFET thermal performance is known as the junction to ambient thermal resistance, Rth(j-amb).

Nexperia receives a lot of requests regarding Rth(j-amb) and unfortunately there is no single value which can be applied to MOSFETs to address all scenarios and applications that it would be used in. Therefore, Nexperia undertook a parametric study using various measurement setups and simulation tools to see the variability in Rth(j-amb) under different conditions. This resulted in the creation of PCB Cauer models, where users can experiment in a “plug-in and play” fashion to see which PCB is most suited to handle the power dissipated in their application. These models are free to use in Siemens PartQuest as shown in Simulation 1.

Simulation 1. PCB cauer models

This (interactive) application note first aims to explain the nature of heat dissipation and then the evaluations made on MOSFET thermal behaviour across various different package types and scenarios.

2. Thermal resistance, Rth

2.1. Junction to mounting base, Rth(j-mb)

Thermal resistance is a measure of how difficult heat finds it to flow through a medium. This is often quoted between two physical points in a system. It is a one-dimensional parameter and is given by taking the temperature difference divided by the power dissipated between two point locations x and y, as seen in Equation 1.

(Eq 1)

The method of heat propagation within a MOSFET is conduction shown in Equation 2, as the transfer of heat from one solid medium to another solid. Further nformation on this topic can be found in Chapter 2.1.1  of AN90003 [1]. The rate of heat flow, Q, is dependent on:

  • Thermal conductivity, k (W/m2K)
  • Cross-sectional area, A (m2)
  • Initial location temperature, T1 (°C)
  • End location temperature, T2 (°C)
  • Distance between two point locations, x (m)

(Eq 2)

In the thermal characteristics section of a data sheet, the MOSFET’s transient thermal impedance curve and the thermal resistance junction to mounting base, Rth(j-mb), is always denoted by the manufacturer with units °C/W or K/W. This is an important parameter as it’s the dominant and least resistive path for heat to dissipate from the junction and out of the device via conduction. This is shown in Fig 3.

Figure 3. Diagram showing the heat flow between junction and mounting base

A lower Rth(j-mb) value is more desirable when comparing within a specific package type e.g LFPAK56, as it suggests the junction will produce a smaller rise in temperature per unit power that is dissipated.

However, unless all the heat is sunk at the boundary of the mounting base a lower Rth(j-mb) may not always produce a lower temperature response when comparing against different package types e.g LFPAK56E vs LFPAK88. This is because in reality, heat is a three-dimensional phenomenon. Referring to Equation 2 for thermal conduction, the rate of heat flow is directly proportional to the cross-sectional area in addition to being inversely proportional to the distance it travels through.

Should an LFPAK56E and LFPAK88 of the same die size be mounted on the same type of PCB, the LFPAK88 would result in a lower Rth(j-amb) than the LFPAK56E. This is despite the LFPAK88 having a larger Rth(j-mb) than the LFPAK56E. The larger surface area of the LFPAK88 mounting base has a greater effect than the thinner LFPAK56E drain tab in improving the rate of conduction, thus resulting in a smaller temperature increase. This leads us into the importance of Rth(j-amb) parameter.

2.2. Junction to ambient, Rth(j-amb)

Heat transfer does not stop at the boundary of the mounting base and usually takes around 50 – 100 microseconds to start flowing out of the mounting base, depending on the die and drain tab thickness of the MOSFET. If power is continually supplied, the MOSFET will eventually reach a steady-state temperature as heat is dissipated via conduction and thermal radiation into the ambient, from which Rth(j-amb) can be obtained. Since Rth(j-amb) provides a much more informative reflection of a MOSFET’s thermal performance in an application, why is it that sometimes the parameter is not shown on manufacturer data sheets? The issue with Rth(j-amb) is that it’s a boundary condition dependent parameter. This means that it depends on characteristics, some of which are shown in Fig 4 such as:

  • PCB size and material properties
  • Number, area and thickness of copper planes/traces
  • Thermal vias
  • Thermal Interface Material (TIM)
  • External heatsinks
  • Free or forced cooling

Figure 4. Diagram showing the various factors that can affect Rth(j-amb) for a MOSFET, red arrow showing the dominant path for heat to flow from junction to ambient

Therefore, the conditions which affect this thermal resistance value is in the hands of the designer and not the MOSFET manufacturer. Some manufacturer datasheets do include conditions to which Rth(j-amb) was obtained for a MOSFET. Examples of these conditions may originate from standards outlined in JESD51-5 and 51-7. Alternatively, manufacturers may set their own proprietary conditions to obtain a certain Rth(j-amb). Despite stating the conditions, the Rth(j-amb) value may not be of relevance to designers in the first place. For instance, a value obtained on a 2s2p PCB measuring 114.3 mm x 76.2 mm in accordance with JESD51-7 may not apply for a designer’s application where the PCB needs to be small enough to be part of a wearable item. Hence, any Rth(j-amb) value found on a datasheet should only be treated as an indication to thermal performance for a particular application.

To help designers who are in their initial stages of a design cycle and have no finalised prototype or PCB layout, Nexperia undertook a study through a series of measurements on different PCBs, package types and scenarios. The process and results will be explained in the subsequent section and hope to give insight into the thermal performance of various MOSFET packages.

3. Obtaining MOSFET thermal performance data

3.1 Thermal measurements – cold plate

Thermal performance data can be obtained in a number of ways. The transient dual interface method outlined in JESD51-14 [2], provides a great setup to show how much power a MOSFET is able to dissipate if a designer is able to provide a sufficient level of cooling to the system. Prior to transient thermal measurements, the forward voltage drop (VF) over the MOSFET body diode needs to be measured over several different temperatures. An example of this is given in Fig 5. The gradient of the line gives the temperature coefficient of the silicon die with units V/°C or V/K and enables the temperature of the junction to be recorded for a given sensing current.

Figure 5. MOSFET body diode VF as a function of junction temperature when a fixed level of current is applied

Subsequently, heating current is applied and thermal measurements are then taken on the liquid-cooled cold plate with the use of carbon paper as a thermal interface material. This was used to improve thermal contact between PCB and cold plate by reducing microscopic pockets of air which contribute to the overall thermal resistance. The cooling curve is then transformed into a transient thermal impedance curve and the Rth(j-amb) value can be seen once the curve reaches a plateau, signifying steady-state. Fig 6 shows an example of a DUT on the liquid-cooled cold plate held in place with pneumatic pistons to apply force on each corner of the PCB.  Below is the setup used for cold plate measurements and Table 1 shows a list of Rth(j-amb) results that were obtained using FR4 PCBs:

  • Standard FR4 PCB measuring 70 mm x 50 mm x 1.6 mm
  • 1” sq top/multi-layer copper planes
  • 2 oz/ft2 (70 µm) copper thickness
  • 25 µm plated thermal vias for multi-layer PCBs, 1.2 mm x 1.2 mm array across copper planes
  • Sensing current: 0.1 A


Figure 6. Exploded diagram of a MOSFET mounted on 70 x 50 x 1.6 mm PCB clamped using a pneumatic system onto a liquid-cooled cold plate

Table 1. Rth(j-amb) measurement results when PCB underside is under constant cooling on cold plate
Rth(j-amb) cold plate measurements (K/W)
Substrate LFPAK33 LFPAK56D LFPAK56 LFPAK88
FR4 1-layer 21.2 25.0 16.7 9.8
FR4 2-layer 13.1 10.1 7.4 4.8
FR4 4-layer 9.7 9.9 5.6 3.9
IMS 6.0 6.4 3.5 2.1

From Table 1, a significant decrease in thermal resistance is observed by using a 2-layer PCB compared to single layer PCB. This is because the thermal vias provide a path of low thermal resistance for heat to be sunk by the cold plate via conduction. If there were no thermal vias included in the multi-layer PCBs, the full extent of constant cooling would not be applied by the PCB and the Rth(j-amb) values would remain similar to that of the single layer PCBs. Further increasing the number of copper layers also decreases the overall thermal resistance across all package types in conjunction with vias. This is because the increased copper content allows for additional low thermal resistance paths to evenly distribute heat across the PCB to be sunk by the cold plate. It's also seen that using Insulated Metal Substrate (IMS) PCBs made from aluminum, provides a path of even lower thermal resistance for heat to dissipate into the cold plate for all packages.

3.2 Thermal measurements in still-air

Should a manufacturer want to provide Rth(j-amb) example on the data sheet, a commonly used procedure is outlined in JESD51-2 [3]. Instead of a liquid-cooled cold plate, the MOSFET is left to cool under natural convection whilst mounted on a PCB in an enclosure measuring 305 mm x 305 mm x 305 mm (1 ft3) as seen in Fig 7. Cooling under natural convection is a commonly used setup and the results should give close indication to how a MOSFET would behave thermally in a large range of applications without cooling fans or heat exchangers.

Figure 7. Example of a DUT within an enclosure to evaluate Rth(j-amb) under still-air

To evaluate the thermal behaviour of MOSFETs cooled under natural convection, the same set of PCBs were measured in the enclosure with the use of 0.01 A sensing current as opposed to 0.1 A for the cold plate measurements. This was done to reduce the effect of heat from the sense current from influencing the recordings. Therefore, remeasuring the MOSFET body diode VF was needed to get the temperature coefficients of the packages using the smaller sensing current. This is because VF is dependent on temperature and the smaller sensing current produces less heat in the junction, hence requiring a higher VF to push current from source to drain. Table 2 shows the Rth(j-amb) results from measurements in still-air.

Table 2. Rth(j-amb) measurement results when PCB underside is suspended in still-air
Rth(j-amb) still air measurements (K/W)
Substrate LFPAK33 LFPAK56D LFPAK56  LFPAK88
FR4 1-layer 48 49 42 36
FR4 2-layer 41 37 36 32
FR4 4-layer 36 36 34 30
IMS 16 16 13 12

From Table 2, it is seen that the overall thermal resistance of all package types is much higher in the absence of a constant cooling source in the system. Without cooling applied, the composition of the PCB is dominant in determining the overall thermal resistance. Again, the inclusion of more copper planes and thermal vias can decrease the Rth(j-amb) for all the devices. This is because it allows heat to conduct and distribute more evenly throughout the PCB, before being released into the ambient via convection and slight amounts of thermal radiation. Thermal measurements under natural convection show that the gap between the thermal performance of smaller and larger packages become reduced if the PCB design incorporates more copper area, thermal vias and high conductivity materials.

3.3. Thermal simulations – Computational Fluid Dynamics (CFD)

CFD is a highly useful and essential tool when it comes to analysing MOSFET thermal performance. It can offer a multitude of analysis options, which can give a plethora of information to the user for a wide range of designs and setups. Conditions such as fixed temperatures, free and forced cooling can also be applied to emulate real-world scenarios depending on how complex the user wants the simulation to be.

CFD can be more preferable compared to transient thermal measurements during the initial design iterations of a PCB. If the user is able to refine a simulation against a known power dissipation on a known PCB, they can have high confidence in simulation results from other designs with different copper layers and areas without the need to order additional prototype PCBs, saving time and cost. The extent of detail offered by CFD then becomes limited to what scenarios the user is able to create.

3.4. Cumulative Structure Functions - measurements vs. simulations

In this study, we have managed to successfully align CFD simulations with transient thermal measurements across a range of packages and substrate types. This was done through evaluating data from cumulative structure function graphs as shown in Fig 8.

Figure 8. Example of a cumulative structure function graph

The cumulative structure function is a sum of all thermal resistances and thermal capacitances within the system. The graph plots thermal capacitance against thermal resistance as heat is dissipated from the junction (origin) and travels into the ambient, which tends to infinite thermal capacitance. Each material or medium heat travels through has a particular thermal resistance and thermal capacitance. Hence, the change in gradients at different locations in the graph signifies heat leaving the boundary of one medium and entering into another.

The cumulative structure function can be transformed into a type of RC network known as a Cauer model, a simplification of which is shown in Fig 9.

 

Figure 9.  Simplified RC Cauer network representing the thermal behaviour as heat flows from junction to ambient

Regarding the comparison between measurements and simulations, Fig 10 shows an example of an alignment made between measurement and a calibrated simulation for LFPAK33 on FR4 1-layer PCB.

Figure 10. Cumulative structure function comparison made on LFPAK33 on FR4 1-layer PCB

In the region below 1 K/W and 0.01 J/K, the curves represent the heat that is flowing from the junction to mounting base and the long shallow gradient after 1 K/W, signifying relatively high thermal resistance, indicates heat flowing into the PCB. The closeness between measurement and simulation means that we were able to model the heat flowing within the MOSFET with a high degree of precision. The simulation process was then replicated for all the different packages and PCB types for constant cooling and natural convection scenarios with success.

4. Thermal models in circuit simulators

4.1. MOSFET models

SPICE and VHDL based circuit simulators are widely used for thermal analysis in addition to electrical analysis. This is done through the use of lumped parameter models, where electrical terms can be used to represent heat flow in a circuit. Foster or Cauer models, otherwise known as RC thermal models, can represent the temperature response of a MOSFET through a network of thermal resistances and thermal capacitances. If a user is able to obtain the power loss profile from the electrical circuit, it can be used in the current source of an RC model. An example of which is displayed in Fig 11.

Figure 11. Example of a MOSFET Cauer model with 5 RC networks

RC models can be generated through curve fitting algorithms and mathematical transforms with excellent alignment to transient measurements and calibrated CFD simulations. Further information can be found in application note AN11261 RC Thermal Models [4].

In addition to electrical models, Nexperia has an ever-expanding portfolio of 5-pin Precision Electrothermal Models (PETs) shown in Fig.11. PETs build upon what is offered by standard RC models. These models have two additional pins, revealing junction temperature and mounting base temperature for the user to connect or probe. These models offer improved accuracy over legacy electrical models as the electrical behaviour can change due to MOSFET self-heating.

Figure11. Example of a LFPAK56 5-pin Precision Electrothermal Model

4.2. PCB models

As explained previously, heat does not stop at the boundary of a MOSFET and will exit into the PCB and ambient in an application. For a long time due to the complexity and variance of Rth(j-amb), there was no availability of PCB thermal models. Designers would need to estimate a characteristic thermal resistance and thermal capacitance of the PCB to connect in series with the MOSFET RC model to give an estimated steady-state thermal response. Any forced cooling in the system or additional RC networks would be very difficult to estimate given the many environmental variables that can be present.

During this study, Nexperia managed to collate a range of thermal data across all packages from measurements and calibrated CFD simulations. Through the use of curve fitting algorithms and calculations, the mounting base to ambient thermal resistance was able to be derived to create PCB Cauer models. Cauer models were chosen over Foster models, as each node bears physical significance to a position in the model.

Since each node of a Cauer model corresponds to a location within the physical build of the MOSFET and PCB, the position at which Cauer models are connected matters. Hence, PCB Cauer models should be connected after the MOSFET Cauer model. In addition, each MOSFET can only be connected to a single PCB Cauer model as they cannot account for thermal coupling between devices. If there are multiple MOSFETs in a setup, they will each need their own PCB Cauer model. An example of a MOSFET and PCB Cauer connection is shown in Fig. 12

Figure 12. Example of an RC thermal model, with discrete MOSFET and PCB Cauer connected in series

PCB Cauers were created across several package types, substrates and both for constant cooled and natural convection scenarios. The reason why PCB models are package specific is due to the differing rates of heat flow experienced by smaller and larger devices of different mounting base areas, as explained previously with Equation 2. For example, the PCB used for a LFPAK88 device can disspiate more power than an identical substrate used for a LFPAK33.


Figure 13. Comparison between circuit simulation and measurements, showing the steady-state thermal resistance of LFPAK88 on PCBs clamped to a constant cooled cold plate

After their creation, these Cauer models then underwent validation against real measurements in a circuit simulator and from Fig 13, they are seen to bear close resemblance to each other. This demonstrates that the PCB Cauer models are able to provide precise and rapid estimations of MOSFET thermal behaviour. This is a huge advantage and reduces the need for designers to perform physical measurements or complex CFD simulations that either require physical prototypes and heavy computational resources. Nexperia intends to expand the library of PCB Cauer models to cover more PCB types to further aid designers in the future.

7. Summary

This interactive application note has shown the huge variability of the parameter Rth(j-amb) and the challenges faced by design engineers to ensure applications can cope with thermal losses. The study has shown that if a designer is able to decrease the thermal resistance of the PCB through methods such as increasing copper area, thermal vias and using high conductivity materials, smaller MOSFETs can exhibit similar thermal performance to larger MOSFETs under natural convection.

Device level thermal performance is readily available from manufacturers. However, the thermal performance of a MOSFETs can vary hugely in different applications and product designs. This study was initiated with the intent to help designers in their initial design phases where PCB layout and construction is not yet known. The intention was to give users precise thermal estimation tools that are easily accessible and easy to use compared to lengthy measurement and CFD simulation methods.

From this study, Nexperia has managed to create a library of PCB Cauer models across several package types for constant cooled and natural convection scenarios to show the user the variability of thermal performance depending on user design. The results of which aim to streamline the thermal design process and decrease the time taken for designers to create new products. These PCB Cauer models are free to access on Siemens PartQuest along with Nexperia electrical and Precision Electrothermal Models.

A PartQuest embedded Cloud simulation was used in this interactive application note.

References

[1] AN90003, LFPAK MOSFET thermal design guide, Nexperia.

[2] JESD51-14, Transient Dual Interface Test Method for the Measurement of the Thermal Resistance Junction-to-Case of Semiconductor Devices with Heat Flow Through a Single Path, JEDEC SOLID STATE TECHNOLOGY ASSOCIATION.

[3] JESD51-2A, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air), JEDEC SOLID STATE TECHNOLOGY ASSOCIATION.

[4] AN11261, RC thermal models, Nexperia.

Page last updated 15 April 2024.

 

国产精品超碰在线97| 在线播放国产精品口爆| 日本免费一区二区三区视频在线播放| 黑人爆操中国明星美女小嫩逼视频| 欧美无遮挡在线国产不卡| 国内揄拍国内精品少妇国语麻豆| 91蜜桃臀久久一区二区| 国产97在线精品一区| 2020国内精品自在自线| 精品人妻伦九区久久69| 欧美一级久久久一区二区| 情色中文字幕在线观看| 欧美日韩亚洲重口另类| 欧美A极v片亚洲A极v片| 正在播放干肥熟老妇视频| 久久久久久久久久久久性高潮| 男女男精品视频免费体验| 久久久午夜福利免费视频| 大鸡巴厂长狂操女人的无毛小逼 | 国产主播在线一区二区| 大陆猛男大鸡巴操骚美女骚逼视频| 人成网av精品自在自拍| 中国亚洲女人69内射少妇| 91中文字幕在线永久| 欧美一区二区三区 中文字幕| 欧美一级片内射美女少妇| MM1313亚洲精品无码久久| 午夜99精品一区二区三区| 精品久久久久久久大| 日本精品一线在线观看| 男人天堂一区二区av| 强奸爆操女白领嫩穴好紧| 国产一区二区三区粉穴| 情产国品久久久久久久9999| 久久免费亚洲免费视频| 国产精品午夜福利在线观看| 日韩AV无码免费看久久久| 男人大鸡巴日逼视频免费| 精品国产av一区二区三区蜜臀| 亚洲av人片乱码色午夜| 无码吃奶揉捏奶头高潮视频| 日韩欧美亚洲精品成人| 欧洲日韩国产一区二区| 天堂av一二三区在线播放| 少妇连续高潮爽到抽搐| 99re7在线观看国产精品| 女人香蕉久久毛毛片精品| 免费国产高清在线观看最新 | 91综合在线国产精品| 久久久久伊人亚洲最大av综合| 丰满熟女少妇一区二区三区| 看男生和女生插小鸡鸡的软件 | 色哟哟在线观看中文字幕| 免费国产国语一级特黄aa大片| 日本一区二区免费在线不卡| 男人下面插入女生下面啊啊啊视频 | 欧美高清视频在线播放| av男人在线东京天堂| 亚洲国产日韩欧美综合在线| 欧美成人高清视频性生活| 男女互射视频在线观看| 好爽好硬进去了好紧视频| 91精品久久午夜大片| 日本女同学在工作里小媳妇操逼逼| 春色在线观看中文字幕91| 国产999精品老熟女唐老鸭| 韩国三级一区二区三区| 国际b站免费直播入口MBA智库| 日本高清中文字幕免费二区| 三级片无码高清免费国产| 男生把坤巴放进女生屁屁| 激情毛片av在线免费看| 日韩在线观看免费av| 国产精品国产三级国产普| 97激情在线视频五月天视频| 欧美一级片内射美女少妇| 91青青草原免费观看| 色噜噜狠狠狠综合曰曰曰| 国产精品中文字幕日韩精品| 欧美激情日韩精品久久久| 精品国产三级国产普通话| 99视频在线观看免费的| 欧美日韩激情在线一区二区| 国产亚洲精品免费专线视频| 国产精品高清在线播放| 日本特黄特黄录像在线| 色帝国综合综社区偷拍| 亚洲伊人情人综合网站| 国产中文成人精品久久久| 精品久久久久久中文字幕网 | 在线观国产精品日韩av| 成人午夜福利视频网址| 亚洲国产免费一区二区| 丰满人妻av一区二区| 亚洲av无码乱码国产精000| 亚洲精久久久久久无码精品| 插烧女人屁眼视频在线观看| 大屌骚逼射精发情少妇鸡巴| 精品一区二区三区久久| 久久久久久精品国产一区| 综合激情五月三开心五月| 亚洲一区精品二人人爽久久| 又粗又长鸡巴插进极品美女逼逼里| 亚洲和欧美一区二区三区| 太大太粗好爽受不了视频| 好吊视频免费在线观看| 中文字幕乱码熟女人妻| 色综合天天综合网天天| 淫荡小骚逼想要大肉棒视频| 日韩毛片资源在线观看| 国产精品欧美国产精品| 夜夜嗨天堂精品一区二区| 99久久精品99久久精品视频 | 久草手机在线观看视频| 蜜桃免费视频在这里看| 正在播放干肥熟老妇视频| 国产蜜臀大码av影院| 欧美91精品一区二区三区| 成年女人午夜毛片免费视频| 午夜天堂精品一区二区| 欧美久久国产精品性夜春夜夜爽 | av日韩免费在线观看| 亚洲人人妻人人爽av| 精品一区二区三区毛片无码18| 欧美人妻精品一区二区三区99| 久久洲Av无码西西人体| 尹人大香蕉在线精品视频| 人人妻人人爽人人澡av毛片| 日产乱码一二三区别免费| 欧美日韩亚洲重口另类| 美女扒开双腿被捅的视频| 在线观看日韩一区二区视频| 91福利区一区二区三区| 在线观国产精品日韩av| 日本大黄毛逼自拍视频| 亚洲日本精品熟女视频| 在线观看永久免费黄色| 三级网站一区二区三区| 色婷婷婷丁香亚洲综合| 韩国三级一区二区三区| 高清一区二区中文字幕| 高跟翘臀后进式视频在线观看| 成人公开无码免费DVD视频| 欧美一区二区三区播放| 无码吃奶揉捏奶头高潮视频| 性感骚女爆射搞基喷水操软件下载| 日韩欧美在线观看黄色| 国产99久久精品一区二区300| 国产精品一区二区亚洲推荐| 97精品在线全国免费视频| 在线观看欧美激情第一页| 国产精品色多多在线观看| 色噜噜狠狠狠综合曰曰曰| 国产成人久久精品麻豆一区| 国产成人欧美一区二区三区的| 男人用力插美女下面的视频 | 午夜天堂精品一区二区| 日本成年人大片免费观看| 日本高清视频不卡一区二区 | 中国亚洲女人69内射少妇| 国产日韩欧美亚洲另类| 日韩女优日逼视频粉嫩开包| 久久久久伊人亚洲最大av综合| 日本一区二区三区精品视频在线| 骚货操死你捅死你骚逼视频| 亚洲av精品一区在线| 日日摸夜夜添夜夜添日韩| 91久久国产精品91久久性色| 91中文字幕国产精品| 搭讪人妻中文字幕系列| 国产成人精品自产拍在线观看 | 日韩AV在线一区二区三区合集| 女人下面视频骚粉骚逼操| 丁香花在线视频观看免费| 久久精品成人无码观看56| 久久精品国产亚洲欧美成人| 无码吃奶揉捏奶头高潮视频| 又粗又长鸡巴插进极品美女逼逼里| 草欧美女高中生的大逼喷水高清| 色欲永久无码精品一二三区| 男的鸡插进女的逼免费视频| 99re7在线观看国产精品| 国产片高潮抽搐喷水免费| 午夜宅男在线视频观看| 蜜桃免费视频在这里看| 国产精品色多多在线观看| 国产精品不卡一区二区久久| 国产在线精品一区二区三区不| 精品自拍视频国产免费自拍视频| 亚洲国产欧洲综合997| 99国产精品九九视频免费看| 亚洲天堂自拍偷拍韩日美| 黑人巨大精品欧美完整版| 97精品在线视频播放| 亚洲欧洲av午夜精品| 美国俄罗斯毛片一区二区| 成年美女黄网站大片免费| 正在播放干熟妇久久精品视频一本| 在线日韩AV免费永久观看| 色婷婷五月综合亚洲大全在线观看| 欧美日高清视频在线观看| 国产精品一区二区亚洲推荐| 久久精品中文字幕人妻中文| 亚洲欧美另类日韩精品| 97精品视频在线观看| 国产精品成人久久综合| 日韩av高清不卡一区二区三区| 香蕉久久夜色精品国产不卡| 黑皮体育生大屌射精合集| 91福利免费体验区试看藏经阁| 欧美成人综合在线观看视频| 免费观看av在线播放| 国产精品高清无遮挡网站| 国产精品中文一区二区 | 麻豆精品人妻一区二区三区99 | 男女激情视频网站免费在线| 亚洲中文字幕有码视频 | 日本人妻在线播放一区| 亚洲成人自拍在线视频| 国产偷国产偷亚洲高清| 天天久久狠狠伊人第一麻豆| 十八禁真人无摭挡观看| 猛男人插女人逼里面操逼| 一区二区三区在线观看日本| 国产综合精品一区二区| 国产精品午夜一区二区三区四区| 激情一区二区三区四区| 亚洲日韩精品欧美一区二区三区| 亚洲91美女夜夜爱爽爽福利| 又粗又长鸡巴插进极品美女逼逼里| 国产真实乱免费高清视频| 水蜜桃美女对机机小骚逼| 日本高清视频不卡一区二区| 欧美亚洲另类久久综合婷婷| 亚洲精品午夜福利网| 日韩在线精品国产一区二区| 动漫无遮羞视频在线观看| 九九热最新免费在线观看| 国内揄拍国内精品久久| 嗯啊好爽用力啊视频在线观看| 91人妻人人澡人人爽人人精品一| 美女粉嫩的逼被操到喷水| 午夜精品成人内射人妻| 色哟哟一区二区三区四区视频 | 欧美日韩激情在线一区二区| 999久久久久国产精品麻豆| 色婷婷亚洲一区二区在线| av网站在线观看亚洲国产| 人妻内射一区二区在线视| 国产成人无码区免费AV片蜜臀| 看中文字幕一区二区三区| 成人久久av一区二区| 色眯眯日本道色综合久久| 99爱在线精品视频免费观看9| 深夜视频在线观看你懂的| 久久精品国产在热亚洲| 一本在线视频中文免费看| 操逼肥的一线天白虎女人 | 97激情在线视频五月天视频| 国产午夜福利在线观看红色一片天 | 99国产精品国产自在现线| 日本视频一区二区三区观看| 欧美久久国产精品性夜春夜夜爽| 中文字幕黄色片在线观看| 亚洲av伊人久久综合性色| 一区二区三区在线观看日本| 亚洲国产精品毛片av在线下载| 91青青草原免费观看| 日韩推理片2021电影在线观看 | 草欧美女高中生的大逼喷水高清| 操逼操逼操逼操逼操逼操逼!!!| 91中文字幕在线永久| 亚洲欧美日韩欧美一区二区三区 | 亚洲中文字幕无码永久免弗首页| 大鸡吧插没毛的骚逼诱惑视频| 综合成人欧美网日韩青椒网| 99国产精品亚洲一区二区三区| 久久精品国产亚洲av护士长| 18出禁止看的色视频| 精品国产高清中文字幕| 亚洲精品一区二区久久| 97国产精品97久久| 欧美成人综合在线观看视频| 奇米777狠狠色噜噜狠狠狠| 男人猛躁进女人免费播放视频| 久久66热re国产毛片基地| 国产一区日韩精品二区| 日韩一区二区三区影片| 国产视频久久久久久久久久久| 久草手机在线观看视频| 久久精品中文字幕一二三| 成人福利视频免费观看| 性感骚女爆射搞基喷水操软件下载| 操逼肥的一线天白虎女人| 午夜老湿机福利免费观看| 亚洲一区国产午夜福利| 亚洲av精品一区在线| 国产日韩欧美第一区二区| 国产精品一区二区大白腿| 韩国三级一区二区三区 | 午夜视频免费在线观看免费| 91精品久久久老熟女九色9| 呃呃啊啊啊好爽快到了黄色| 欧美成人三区四区在线观看| 欧美美女真人全裸外阴大阴口日逼| 久久精品 国产精品香蕉| 国产精品毛片高清在线完整版 | 亚洲国产日本韩国福利在线观看| 久久99精品久久久久久手机免费| 国产精品一区二区三区欧美| 日韩精品女性三级视频| 操白虎护士小骚逼的视频| 男人和女人插插视频免费看| 中文无字幕一区二区三区| 白色紧身裤无码系列在线| 亚洲精品精品日本日本| 欧美日韩国产成人高清视频| 中文字幕人妻丝袜一区一三区 | 国产免费一区二区三区最新6| 天天操天天干五月婷婷热| 五月婷婷六月丁香深爱| 99久视频在线观看免费| 九九在线精品亚洲国产涩爱| 免费国产国语一级特黄aa大片| 少妇又白又紧又爽免费视频| 国产一级二级三级内谢| 国产日韩一区二区不卡视频| 99视频在线观看免费的| 成人公开无码免费DVD视频| 男人机巴操女人骚穴视频| 日韩欧美一级精品久久| 日韩天堂视频在线播放| 男人把鸡鸡捅进美女屁骨里 | 九九在线精品亚洲国产涩爱| 久久天天躁拫拫躁夜夜AV| 大鸡巴操美女骚逼嫩穴视频| 大鸡巴抽插女人骚逼视频| 操逼啊口爆啊rrr中途啊免费| 日韩中文字幕视频一区| 国产欧美精品一区二区久久久| 美女扒开大腿让男生捅高潮的视频 | 中文人妻无码一区二区三区在线| 国产超级碰碰人在线播放| 国产精品欧美精品日韩精品| 成人免费淫片在线观看免费| 欧美日韩亚洲一区二区在线| 神马午夜伦理精品亚洲| 人妻少妇精品视频中文字幕免费| 祼体美女上厕所被操视频APp| 国产麻豆剧传媒免费观看| 国产精品高颜值18禁| 亚洲AV永久无码精品蜜芽| 国产av自拍日韩高av| 国产精品欧美精品日韩精品| 一起草视频网站在线播放| 国产av自拍日韩高av| 九九热6这里只有精品视频| 最近中文字幕国产精品| 成年女人喷潮毛片免费播放| 国产超级碰碰人在线播放| 亚洲精品第一页在线观看| 国产综合色在线视频观看| 在线观看亚洲欧洲精品| 亚洲精品免费观看91| 性生活视频在线观看视频| 亚洲欧洲av午夜精品| 国产精品成人久久综合| 中文字幕黄色片在线观看| 黄色三级电影在线入口| 插日日操天天干天天操天天透| 国产学生粉嫩在线观看在| 国产黄色一级大片全集| 日本人妻在线播放一区| 撕开奶罩揉吮奶头大尺度视频 | 99国产欧美久久久精品蜜桃| 久久这里只有视频精品| 货在沙发风骚至极 自摸肥逼勾引| 大大大长屌姓交口交观看| 无码无羞耻肉3d动漫在线观看| 日韩在线精品国产一区二区| 久久狼精品一区二区三区| 久草手机在线观看视频| 情激情综合亚洲欧美专区| 国产黄色网页在线观看| 中国无码AV看免费大片在线| 美女av一区二区三区| 欧洲日韩国产一区二区| 在线精品国产亚洲av日韩| 日韩一区二区三区免费视频| 亚洲国产av一区二区三区| 成人深夜在线观看免费视频| 国产99久久精品一区二区300| 日韩中文字幕av电影| 91精品人妻一区二区蜜桃| 东北人妻丰满熟妇av无码区| 欧美特黄片在线免费播放| 色综合久久久中文字幕波多| 日本高清少妇一区二区三区| 我想看黄片久久久久久久久久久| 99国产欧美久久久精品蜜桃| 黄色段片一区二区三区| 免费黄色大片在线观看| 国产富婆高潮一区二区| 亚洲精品午夜福利网| 大鸡巴厂长狂操女人的无毛小逼| 日韩一区二区三区东京热| 神马午夜伦理精品亚洲| 看蓝色的鸡巴搞进去女人的逼里面| 一区二区三区欧美影片| 无码人妻精品丰满熟妇区| 2022AV亚洲天堂在线观看| 久久久国产综合av天堂| 国产蜜臀av在线一区在线| 亚洲人妻av一区二区 | 肉棒插小穴视频你懂得分享| 国产99久久精品一区二区300| 日韩的一区二区区别是什么| 国产天堂av在线免费观看| 一本色道久久88综合日韩| 在线观看日韩一区二区视频| MM1313亚洲精品无码久久| 久草手机在线观看视频| 国产一区二区最新在线| 国产裸体美女永久免费无遮挡 | 视频一区视频二区同事| 欧美日韩艺术电影在线| 国产91手机在线播放青青| 国产人碰人摸人澡人视频| 色久悠悠在线观看视频| 嗯啊不要用力操逼视频cable| 成人亚洲av免费在线| 人妻少妇精品视频区二| 亚洲同性男男GV在线观看| 国产免费啪嗒啪嗒视频看看| 国产99久久精品一区二区300 | 韩国三级一区二区三区| 九九热6这里只有精品视频| 国产黄色网页在线观看| 久久精品国产99久久6动漫欧| 欧洲中文字幕日韩精品成人| 最新推荐久久伊人久久久| 国产精品免费视频播放不卡| 白嫩美女在线日韩专区| 国产精品视频一区不卡| 国产男女高清视频在线| 米奇8888在线精品视频| 成年女人喷潮毛片免费播放| 成人精品一区二区三区不卡 | 美女被黑人鸡巴草的爱液狂溅| 蜜桃久久精品一区二区| 久久66热re国产毛片基地| 一起草视频网站在线播放| 亚洲一级毛片免费在线观看| 国产乱码精品一区二区三区播放| 国内精品久久人妻白浆| 香蕉久久精品日日躁夜夜躁 | 国产99久久精品一区二区300 | 日本熟妇内射一区二区| 日韩一区二区在线精品| 国产一区二区最新在线| 又黄又爽有无遮挡的网站| 中文字幕一区二区三区乱码| 九九热最新免费在线观看| 性生活AV在线直播成人社区| 国产富婆高潮一区二区| 色综合久久88色综合久久天| 五月婷婷六月丁香深爱| av天堂午夜在线观看| 精品日韩av在线免费观看| 成年大片在线免费播放| 欧美日韩精品成人影院| 久久热福利视频就在这里| 黑丝视频在线播放91| 国产传媒第一页在线观看| 超大鸡巴操处女小骚逼免费视频| 一区二区三区人妻在线| 中国国语毛片免费观看视频| 香蕉av秘 一区二区三区| 啊用大鸡巴操骚逼逼视频| 操逼啊口爆啊rrr中途啊免费| 国产精品超碰在线97| 99久久精品国产成人综合| 草欧美女高中生的大逼喷水高清 | 欧美精品aaaa久久久| 午夜福利片国产精品张柏芝| 大白屁股精品视频国产| 公侵犯人妻中文字幕一区| 日日摸夜夜添夜夜添亚洲女人| 亚洲毛片成人在线观看| 男人添嫩p视频在线观看| 国产日韩欧美在线视频播放| 国产非洲一区二区三区久久久久久| 99尹人香蕉国产免费天天拍| 亚洲和欧洲一码二码区视频| 国产精品一级二级三级视频| 伊人2222成人综合网| 成年女人喷潮毛片免费播放 | 国产精品亚洲欧美久久| 中文字幕有码人妻在线| 国产内射一级一片高清视频蘑菇| 综合成人欧美网日韩青椒网| 国产精品无码久久综合网| 国产精品无码无不卡在线观看| 国产黄色网页在线观看| 成年大片在线免费播放| 我想看黄片久久久久久久久久久| 国产蜜臀av在线一区在线| 中文字幕亚洲欧美日韩在线不卡| 免费 无码 国产在线观| 国产大陆日韩一区二区三区 | 深夜福利一区二区三区欧美| 欧美一级久久精品费色a| 亚州欧美大鸡巴操肥逼逼| 日韩色视频一区二区三区亚洲| 大鸡巴插进小骚逼漫画羞羞漫画| 18精品久久久无码午夜福利| 131美女爱做视频高清在线| 啊啊草死我爽日本在线观看| 激情毛片av在线免费看| 九九久久精品视频免费观看| 大鸡八男暴肏淫浪妇视频| 精品色欲久久久青青青人人爽 | 丰满人妻少妇被猛烈进入| 日韩天堂视频在线播放| 日本大黄毛逼自拍视频| 办公室娇喘的白丝老师在线看| 亚洲一区二区黄色录像| 嗯啊男人捅女人小穴视频| 大鸡巴抽插女人骚逼视频| 日本女同学在工作里小媳妇操逼逼| 天堂av一二三区在线播放| 天堂丝袜人妻中文字幕在线| 大鸡吧插没毛的骚逼诱惑视频| 亚洲美女一区二区暴力吞精| 国产日韩精品专区免费| 欧美午夜精品福利在线观看| 五月天丁香婷婷狠狠狠| 久久久无码精品亚洲日韩18禁| 97国产精品97久久| 国产最新视频一区二区三区| 公车好紧好爽再搔一点浪一点| 国际b站免费直播入口MBA智库| 伊人久久综在合线亚洲| 日韩中文字幕在线视频免费观看| 欧美一级久久精品费色a| 中文字幕人妻高清乱码| 七月婷婷精品视频在线观看 | 久久久久精品产亚洲av| av天堂午夜在线观看| 丁香婷婷激情综合俺也去| av电影日韩在线播放一区二区三区| 国产超碰天天爽天天做天天添| 中文人妻av一区二区| 成人三级在线播放线观看| 公交车上猛烈的进入的a片视频| 国产一二三在线不卡视频| 日韩精品视频观看专区| 日日摸夜夜添夜夜添亚洲女人| 国产一级二级三级内谢| 日韩av在线播放免费观看| 97精品国产自产在线观看永久 | 日韩A级毛片免费视频播放| 麻豆精品人妻一区二区三区99| 亚洲AV无码专区片在线观看| 日韩A级毛片免费视频播放| 男女男精品视频免费体验| 美女露出逼让男生用鸡巴捅| 快插我的逼逼里好爽的免费视频| 国产精品亚洲福利在线| 人成网av精品自在自拍| 五月婷婷久久综合激情| 国产一区日韩精品二区| 激情五月六月婷婷色视频| 久久久久精品产亚洲av| 久久国产综合尤物免费观看| 精品亚洲456在线播放| 在线观看性生活免费看| 日本黄大片538视频| av在线中文字幕乱码| 美女扒开屁股让男人桶大奶子骚逼| 91青青草原免费观看| 国产精品成人av高清在线观看 | 麻豆国产成人AV高清在线观看 | 国产成人精品无人区一区| 国产真实乱免费高清视频 | 97碰碰车成人免费视频| 成人午夜福利视频网址| 国产精品久久av麻豆| 午夜视频免费在线观看免费| 人妻少妇精品视频中文字幕免费| 色综合久久88色综合久久天| 9久热久re爱免费精品视频| 无码系列久久久人妻无码系列| 黄色网色网色网色网色| 丝袜美腿福利一区二区| 学生妹被爽到高潮受不了视频| 日韩中文字幕av电影| 大屁股迷人少妇在线观看| 女人逼需要大鸡吧干的视频| 综合激情五月三开心五月| 男女性情视频免费网站| 2020国内精品自在自线| 日韩精品av在线观看| 日韩欧美一级特黄大片| 大鸡巴操女生视频男上女下式黑人| 男生大肉捧插女生的视频| 国产精品区第二页尤自在拍| 国产日韩人av在线播放| 成人福利视频免费观看| 丁香激情综合网激情五月 | 久久免费看美女高潮视频| 人妻少妇精品中文字幕av蜜桃| 高清一区二区中文字幕| 国产成人欧美一区二区三区的| 亚洲免费视频区一区二| 亚洲成人av免费在线看| 国产黄色污一区二区三区| 日韩AV在线一区二区三区合集 | 大鸡巴操美女骚逼嫩穴视频| 国产成人久久精品麻豆一区 | 国内揄拍国内精品久久| 99精品视频看国产啪视频新| 亚洲AV成人无码网天堂| 国产黄色污一区二区三区| 四虎国产永久免费视频| 久久精品久久精品伊人69| 欧美一区二区三区播放| 自由成熟性生活免费视频| 在线精品国产亚洲av日韩| 在线观看亚洲欧洲精品| 哺乳一区二区久久久免费| 国产在线视频一区二区不卡| 最近日本免费播放视频午夜| 欧美特黄片在线免费播放| 在线观看性生活免费看| 亚洲天堂av在线观看免费| 一区二区三区亚洲免费看| 亚洲中文字幕无码永久免弗首页| 另类艳情双性人妖视频网站| 国产aa视频一区二区三区| 天天操亚洲精品日韩欧美| 午夜宅男在线视频观看| 五月婷婷六月丁香俺也去| 看免费国外大鸡巴操小骚逼| 国产日韩欧美第一区二区| 国产精品超碰在线97 | 大鸡巴用力抽插骚逼视频| 美国俄罗斯毛片一区二区| 男生把小鸡鸡插到女生阴巢的视频| 日本剧情片在线播放网站| 国产裸体美女永久免费无遮挡| 久久香蕉免费国产天天看| 国产欧美日韩综合精品二区| 欧美日韩中文精品在线| 无码吃奶揉捏奶头高潮视频| 好吊妞一样的免费视频| 在线免费看黄国产精品| 少妇一夜一次一区二区| 又大又长又黄又粗又爽的视频| 国产最新视频一区二区三区| 日本不卡二区在线观看| 国产日韩欧美在线视频播放| 久久久精品欧美中文一区二区三区| 国产精品高清无遮挡网站| 好好热精品视频在线观看| 大陆猛男大鸡巴操骚美女骚逼视频| 五月天丁香婷婷狠狠狠| 日韩特黄特色大片免费看| 乱淫一区二区三区麻豆| 精品久久久久久久大| 国产白嫩无套视频在线播放蜜桃| 饥渴少妇高潮露脸嗷嗷叫 | 日韩精品一区二区三区视频网| 亲少妇摸少妇和少妇啪啪| 久久国产一级黄色片子| 黄色顶级男和女性视频毛视频| 伊人久久综合大杳蕉中文无码| 久久精品国产欧美电影| av在线播放亚洲天堂| 撕开奶罩揉吮奶头大尺度视频| 国产欧美精品久久99亚洲| 又色又爽又黄的视频大全| 国产一二三在线不卡视频| 丁香花在线视频观看免费| 伊人成人在线高清视频| 欧美精品久久天堂久久精品| 动态强干叉美女小穴视频 | 日本一区二区高清视频在线观看 | 国产精品大片在线播放| av黄频在线观看免费| 国产综合亚洲欧美日韩在线| 草欧美女高中生的大逼喷水高清 | 国产精品高颜值18禁| 国产精品午夜一区二区三区四区 | 这里都是精品熟女内射| 欧美亚洲区一区二区三区| 久久久无码精品亚洲日韩18禁| 尹人大香蕉在线精品视频| 国产一区二区三区粉穴| 美女被大鸡巴插男内射欧美 | 亚洲同性男男GV在线观看| 日韩欧美一级精品久久| 中文字幕乱码一区久久麻豆蜜芽| 国产婷婷综合在线视频中| 高颜值午夜福利在线观看| 国产日韩一区二区不卡视频| 国产农村av对白观看| 日本人妻在线播放一区| 久久国产综合尤物免费观看 | 国产精品人成在线播放| 又黄又爽有无遮挡的网站| 久久综合亚洲一二三区| 国产亚洲精品免费专线视频 | 国产熟女激情视频自拍| 中文字幕有码久久高清| 日本熟妇内射一区二区| 91精品极品在线免费观看| 国产精品久久av麻豆| 欧美人妻精品一区二区三区99 | 国产天堂av在线免费观看| 日韩A级毛片免费视频播放| 操白虎护士小骚逼的视频| 亚洲国产中文剧情av鲁一鲁| 国产一卡二卡精品乱码| 欧美日韩综合不卡一区二区三区 | 亚洲中久无码永久在线看| 男生把小鸡鸡插到女生阴巢的视频 | 无码少妇一级av片在线观看| 玖玖资源网站最新网站| 好好热精品视频在线观看| 在线播放日本国产精品| 成人午夜福利视频网址| 欧美成人一区二区三区高清| 久久午夜av一区二区| 成人性生活视频在线观看| 国产精品国产三级国产av闹 | 日本人妻免费在线观看| 亚洲av无码乱码国产精000| 久久国产综合尤物免费观看 | 97精品在线视频播放| 免费黄色大片在线观看| 日本中文一二区有码在线| 久久久久久一区二区三区四区别墅 | 正在播放干熟妇久久精品视频一本 | 亚洲人人妻人人爽av| 欧美成人午夜福利影院| 天天躁日日躁狠狠躁日日| 隔壁人妻欲求不满中文字幕| 日韩欧美三级影片在线观看| 国产精品女同性一区二区| 亚洲高清在线精品一区二区| av黄频在线观看免费 | 国产欧美成人精品一区二区| 日韩欧美一区二区不卡在线观看视频| 亚洲精品不卡一二三区| 大鸡巴不停抽插双插喷水漫画视频| 十八禁网站免费在线观看| 久久免费看美女高潮视频| jk黑丝白丝国产精品| 91在线免费在线观看| 亚洲熟妇熟女久久精品一区| 日韩三级中文字幕不卡| 激情一区二区三区四区| 视频在线观看免费高清自拍|