操逼啊口爆啊rrr中途啊免费-中文字幕av网一区二区-中文字幕久久精品波多野结百度-国产三级视频在线观看

雙極性晶體管

二極管

ESD保護、TVS、濾波和信號調(diào)節(jié)ESD保護

MOSFET

氮化鎵場效應(yīng)晶體管(GaN FET)

絕緣柵雙極晶體管(IGBTs)

模擬和邏輯IC

汽車應(yīng)用認(rèn)證產(chǎn)品(AEC-Q100/Q101)

IAN50019 - Thermal boundary condition study on MOSFET packages and PCB substrates

This interactive application note explains the boundary condition study performed to evaluate the thermal performance of various Nexperia MOSFET Packages and PCB Substrates. The results from measurements and simulations obtained in the study led to the creation of PCB Cauer models, which users can utilise in circuit simulators alongside Nexperia electrical and precision electrothermal models.

Author: Christopher Liu, Applications Engineer, Manchester

This interactive application note contains an embedded Cloud based simulation to augment the text.

To open the embedded simulation, simply hover over the simulation image. Left click anywhere in the graphic area once the central play button changes in colour. This opens the schematic in the Cloud environment. See the interactive application note tutorial page for more details on how to use the simulations.

See related application note: AN90013 LFPAK MOSFET thermal design guide

 

Download AN50019

1. Introduction

Power MOSFETs provide efficient conversion and supply of power in a wide variety of automotive, industrial and consumer applications. However, no MOSFET is 100% efficient and as such they exhibit three types of power losses during normal operation:

  • Switching losses during the transitional phase, see Fig 1.
  • Conduction losses during the on-state, see Fig 1.
  • Avalanche losses if breakdown voltage is exceeded when driving an inductive load, see Fig 2.

Figure 1. MOSFET turn-on waveforms


Figure 2. MOSFET turn-off avalanche waveforms

The culmination of these power losses can result in thermal overstress and failure of the MOSFET if not sufficiently accounted for in a PCB design. Therefore, it is necessary to consider thermal analysis during the design cycle to ensure the MOSFET does not exceed its maximum operating temperature. The parameter which gives the user the most relevant indicator of MOSFET thermal performance is known as the junction to ambient thermal resistance, Rth(j-amb).

Nexperia receives a lot of requests regarding Rth(j-amb) and unfortunately there is no single value which can be applied to MOSFETs to address all scenarios and applications that it would be used in. Therefore, Nexperia undertook a parametric study using various measurement setups and simulation tools to see the variability in Rth(j-amb) under different conditions. This resulted in the creation of PCB Cauer models, where users can experiment in a “plug-in and play” fashion to see which PCB is most suited to handle the power dissipated in their application. These models are free to use in Siemens PartQuest as shown in Simulation 1.

Simulation 1. PCB cauer models

This (interactive) application note first aims to explain the nature of heat dissipation and then the evaluations made on MOSFET thermal behaviour across various different package types and scenarios.

2. Thermal resistance, Rth

2.1. Junction to mounting base, Rth(j-mb)

Thermal resistance is a measure of how difficult heat finds it to flow through a medium. This is often quoted between two physical points in a system. It is a one-dimensional parameter and is given by taking the temperature difference divided by the power dissipated between two point locations x and y, as seen in Equation 1.

(Eq 1)

The method of heat propagation within a MOSFET is conduction shown in Equation 2, as the transfer of heat from one solid medium to another solid. Further nformation on this topic can be found in Chapter 2.1.1  of AN90003 [1]. The rate of heat flow, Q, is dependent on:

  • Thermal conductivity, k (W/m2K)
  • Cross-sectional area, A (m2)
  • Initial location temperature, T1 (°C)
  • End location temperature, T2 (°C)
  • Distance between two point locations, x (m)

(Eq 2)

In the thermal characteristics section of a data sheet, the MOSFET’s transient thermal impedance curve and the thermal resistance junction to mounting base, Rth(j-mb), is always denoted by the manufacturer with units °C/W or K/W. This is an important parameter as it’s the dominant and least resistive path for heat to dissipate from the junction and out of the device via conduction. This is shown in Fig 3.

Figure 3. Diagram showing the heat flow between junction and mounting base

A lower Rth(j-mb) value is more desirable when comparing within a specific package type e.g LFPAK56, as it suggests the junction will produce a smaller rise in temperature per unit power that is dissipated.

However, unless all the heat is sunk at the boundary of the mounting base a lower Rth(j-mb) may not always produce a lower temperature response when comparing against different package types e.g LFPAK56E vs LFPAK88. This is because in reality, heat is a three-dimensional phenomenon. Referring to Equation 2 for thermal conduction, the rate of heat flow is directly proportional to the cross-sectional area in addition to being inversely proportional to the distance it travels through.

Should an LFPAK56E and LFPAK88 of the same die size be mounted on the same type of PCB, the LFPAK88 would result in a lower Rth(j-amb) than the LFPAK56E. This is despite the LFPAK88 having a larger Rth(j-mb) than the LFPAK56E. The larger surface area of the LFPAK88 mounting base has a greater effect than the thinner LFPAK56E drain tab in improving the rate of conduction, thus resulting in a smaller temperature increase. This leads us into the importance of Rth(j-amb) parameter.

2.2. Junction to ambient, Rth(j-amb)

Heat transfer does not stop at the boundary of the mounting base and usually takes around 50 – 100 microseconds to start flowing out of the mounting base, depending on the die and drain tab thickness of the MOSFET. If power is continually supplied, the MOSFET will eventually reach a steady-state temperature as heat is dissipated via conduction and thermal radiation into the ambient, from which Rth(j-amb) can be obtained. Since Rth(j-amb) provides a much more informative reflection of a MOSFET’s thermal performance in an application, why is it that sometimes the parameter is not shown on manufacturer data sheets? The issue with Rth(j-amb) is that it’s a boundary condition dependent parameter. This means that it depends on characteristics, some of which are shown in Fig 4 such as:

  • PCB size and material properties
  • Number, area and thickness of copper planes/traces
  • Thermal vias
  • Thermal Interface Material (TIM)
  • External heatsinks
  • Free or forced cooling

Figure 4. Diagram showing the various factors that can affect Rth(j-amb) for a MOSFET, red arrow showing the dominant path for heat to flow from junction to ambient

Therefore, the conditions which affect this thermal resistance value is in the hands of the designer and not the MOSFET manufacturer. Some manufacturer datasheets do include conditions to which Rth(j-amb) was obtained for a MOSFET. Examples of these conditions may originate from standards outlined in JESD51-5 and 51-7. Alternatively, manufacturers may set their own proprietary conditions to obtain a certain Rth(j-amb). Despite stating the conditions, the Rth(j-amb) value may not be of relevance to designers in the first place. For instance, a value obtained on a 2s2p PCB measuring 114.3 mm x 76.2 mm in accordance with JESD51-7 may not apply for a designer’s application where the PCB needs to be small enough to be part of a wearable item. Hence, any Rth(j-amb) value found on a datasheet should only be treated as an indication to thermal performance for a particular application.

To help designers who are in their initial stages of a design cycle and have no finalised prototype or PCB layout, Nexperia undertook a study through a series of measurements on different PCBs, package types and scenarios. The process and results will be explained in the subsequent section and hope to give insight into the thermal performance of various MOSFET packages.

3. Obtaining MOSFET thermal performance data

3.1 Thermal measurements – cold plate

Thermal performance data can be obtained in a number of ways. The transient dual interface method outlined in JESD51-14 [2], provides a great setup to show how much power a MOSFET is able to dissipate if a designer is able to provide a sufficient level of cooling to the system. Prior to transient thermal measurements, the forward voltage drop (VF) over the MOSFET body diode needs to be measured over several different temperatures. An example of this is given in Fig 5. The gradient of the line gives the temperature coefficient of the silicon die with units V/°C or V/K and enables the temperature of the junction to be recorded for a given sensing current.

Figure 5. MOSFET body diode VF as a function of junction temperature when a fixed level of current is applied

Subsequently, heating current is applied and thermal measurements are then taken on the liquid-cooled cold plate with the use of carbon paper as a thermal interface material. This was used to improve thermal contact between PCB and cold plate by reducing microscopic pockets of air which contribute to the overall thermal resistance. The cooling curve is then transformed into a transient thermal impedance curve and the Rth(j-amb) value can be seen once the curve reaches a plateau, signifying steady-state. Fig 6 shows an example of a DUT on the liquid-cooled cold plate held in place with pneumatic pistons to apply force on each corner of the PCB.  Below is the setup used for cold plate measurements and Table 1 shows a list of Rth(j-amb) results that were obtained using FR4 PCBs:

  • Standard FR4 PCB measuring 70 mm x 50 mm x 1.6 mm
  • 1” sq top/multi-layer copper planes
  • 2 oz/ft2 (70 µm) copper thickness
  • 25 µm plated thermal vias for multi-layer PCBs, 1.2 mm x 1.2 mm array across copper planes
  • Sensing current: 0.1 A


Figure 6. Exploded diagram of a MOSFET mounted on 70 x 50 x 1.6 mm PCB clamped using a pneumatic system onto a liquid-cooled cold plate

Table 1. Rth(j-amb) measurement results when PCB underside is under constant cooling on cold plate
Rth(j-amb) cold plate measurements (K/W)
Substrate LFPAK33 LFPAK56D LFPAK56 LFPAK88
FR4 1-layer 21.2 25.0 16.7 9.8
FR4 2-layer 13.1 10.1 7.4 4.8
FR4 4-layer 9.7 9.9 5.6 3.9
IMS 6.0 6.4 3.5 2.1

From Table 1, a significant decrease in thermal resistance is observed by using a 2-layer PCB compared to single layer PCB. This is because the thermal vias provide a path of low thermal resistance for heat to be sunk by the cold plate via conduction. If there were no thermal vias included in the multi-layer PCBs, the full extent of constant cooling would not be applied by the PCB and the Rth(j-amb) values would remain similar to that of the single layer PCBs. Further increasing the number of copper layers also decreases the overall thermal resistance across all package types in conjunction with vias. This is because the increased copper content allows for additional low thermal resistance paths to evenly distribute heat across the PCB to be sunk by the cold plate. It's also seen that using Insulated Metal Substrate (IMS) PCBs made from aluminum, provides a path of even lower thermal resistance for heat to dissipate into the cold plate for all packages.

3.2 Thermal measurements in still-air

Should a manufacturer want to provide Rth(j-amb) example on the data sheet, a commonly used procedure is outlined in JESD51-2 [3]. Instead of a liquid-cooled cold plate, the MOSFET is left to cool under natural convection whilst mounted on a PCB in an enclosure measuring 305 mm x 305 mm x 305 mm (1 ft3) as seen in Fig 7. Cooling under natural convection is a commonly used setup and the results should give close indication to how a MOSFET would behave thermally in a large range of applications without cooling fans or heat exchangers.

Figure 7. Example of a DUT within an enclosure to evaluate Rth(j-amb) under still-air

To evaluate the thermal behaviour of MOSFETs cooled under natural convection, the same set of PCBs were measured in the enclosure with the use of 0.01 A sensing current as opposed to 0.1 A for the cold plate measurements. This was done to reduce the effect of heat from the sense current from influencing the recordings. Therefore, remeasuring the MOSFET body diode VF was needed to get the temperature coefficients of the packages using the smaller sensing current. This is because VF is dependent on temperature and the smaller sensing current produces less heat in the junction, hence requiring a higher VF to push current from source to drain. Table 2 shows the Rth(j-amb) results from measurements in still-air.

Table 2. Rth(j-amb) measurement results when PCB underside is suspended in still-air
Rth(j-amb) still air measurements (K/W)
Substrate LFPAK33 LFPAK56D LFPAK56  LFPAK88
FR4 1-layer 48 49 42 36
FR4 2-layer 41 37 36 32
FR4 4-layer 36 36 34 30
IMS 16 16 13 12

From Table 2, it is seen that the overall thermal resistance of all package types is much higher in the absence of a constant cooling source in the system. Without cooling applied, the composition of the PCB is dominant in determining the overall thermal resistance. Again, the inclusion of more copper planes and thermal vias can decrease the Rth(j-amb) for all the devices. This is because it allows heat to conduct and distribute more evenly throughout the PCB, before being released into the ambient via convection and slight amounts of thermal radiation. Thermal measurements under natural convection show that the gap between the thermal performance of smaller and larger packages become reduced if the PCB design incorporates more copper area, thermal vias and high conductivity materials.

3.3. Thermal simulations – Computational Fluid Dynamics (CFD)

CFD is a highly useful and essential tool when it comes to analysing MOSFET thermal performance. It can offer a multitude of analysis options, which can give a plethora of information to the user for a wide range of designs and setups. Conditions such as fixed temperatures, free and forced cooling can also be applied to emulate real-world scenarios depending on how complex the user wants the simulation to be.

CFD can be more preferable compared to transient thermal measurements during the initial design iterations of a PCB. If the user is able to refine a simulation against a known power dissipation on a known PCB, they can have high confidence in simulation results from other designs with different copper layers and areas without the need to order additional prototype PCBs, saving time and cost. The extent of detail offered by CFD then becomes limited to what scenarios the user is able to create.

3.4. Cumulative Structure Functions - measurements vs. simulations

In this study, we have managed to successfully align CFD simulations with transient thermal measurements across a range of packages and substrate types. This was done through evaluating data from cumulative structure function graphs as shown in Fig 8.

Figure 8. Example of a cumulative structure function graph

The cumulative structure function is a sum of all thermal resistances and thermal capacitances within the system. The graph plots thermal capacitance against thermal resistance as heat is dissipated from the junction (origin) and travels into the ambient, which tends to infinite thermal capacitance. Each material or medium heat travels through has a particular thermal resistance and thermal capacitance. Hence, the change in gradients at different locations in the graph signifies heat leaving the boundary of one medium and entering into another.

The cumulative structure function can be transformed into a type of RC network known as a Cauer model, a simplification of which is shown in Fig 9.

 

Figure 9.  Simplified RC Cauer network representing the thermal behaviour as heat flows from junction to ambient

Regarding the comparison between measurements and simulations, Fig 10 shows an example of an alignment made between measurement and a calibrated simulation for LFPAK33 on FR4 1-layer PCB.

Figure 10. Cumulative structure function comparison made on LFPAK33 on FR4 1-layer PCB

In the region below 1 K/W and 0.01 J/K, the curves represent the heat that is flowing from the junction to mounting base and the long shallow gradient after 1 K/W, signifying relatively high thermal resistance, indicates heat flowing into the PCB. The closeness between measurement and simulation means that we were able to model the heat flowing within the MOSFET with a high degree of precision. The simulation process was then replicated for all the different packages and PCB types for constant cooling and natural convection scenarios with success.

4. Thermal models in circuit simulators

4.1. MOSFET models

SPICE and VHDL based circuit simulators are widely used for thermal analysis in addition to electrical analysis. This is done through the use of lumped parameter models, where electrical terms can be used to represent heat flow in a circuit. Foster or Cauer models, otherwise known as RC thermal models, can represent the temperature response of a MOSFET through a network of thermal resistances and thermal capacitances. If a user is able to obtain the power loss profile from the electrical circuit, it can be used in the current source of an RC model. An example of which is displayed in Fig 11.

Figure 11. Example of a MOSFET Cauer model with 5 RC networks

RC models can be generated through curve fitting algorithms and mathematical transforms with excellent alignment to transient measurements and calibrated CFD simulations. Further information can be found in application note AN11261 RC Thermal Models [4].

In addition to electrical models, Nexperia has an ever-expanding portfolio of 5-pin Precision Electrothermal Models (PETs) shown in Fig.11. PETs build upon what is offered by standard RC models. These models have two additional pins, revealing junction temperature and mounting base temperature for the user to connect or probe. These models offer improved accuracy over legacy electrical models as the electrical behaviour can change due to MOSFET self-heating.

Figure11. Example of a LFPAK56 5-pin Precision Electrothermal Model

4.2. PCB models

As explained previously, heat does not stop at the boundary of a MOSFET and will exit into the PCB and ambient in an application. For a long time due to the complexity and variance of Rth(j-amb), there was no availability of PCB thermal models. Designers would need to estimate a characteristic thermal resistance and thermal capacitance of the PCB to connect in series with the MOSFET RC model to give an estimated steady-state thermal response. Any forced cooling in the system or additional RC networks would be very difficult to estimate given the many environmental variables that can be present.

During this study, Nexperia managed to collate a range of thermal data across all packages from measurements and calibrated CFD simulations. Through the use of curve fitting algorithms and calculations, the mounting base to ambient thermal resistance was able to be derived to create PCB Cauer models. Cauer models were chosen over Foster models, as each node bears physical significance to a position in the model.

Since each node of a Cauer model corresponds to a location within the physical build of the MOSFET and PCB, the position at which Cauer models are connected matters. Hence, PCB Cauer models should be connected after the MOSFET Cauer model. In addition, each MOSFET can only be connected to a single PCB Cauer model as they cannot account for thermal coupling between devices. If there are multiple MOSFETs in a setup, they will each need their own PCB Cauer model. An example of a MOSFET and PCB Cauer connection is shown in Fig. 12

Figure 12. Example of an RC thermal model, with discrete MOSFET and PCB Cauer connected in series

PCB Cauers were created across several package types, substrates and both for constant cooled and natural convection scenarios. The reason why PCB models are package specific is due to the differing rates of heat flow experienced by smaller and larger devices of different mounting base areas, as explained previously with Equation 2. For example, the PCB used for a LFPAK88 device can disspiate more power than an identical substrate used for a LFPAK33.


Figure 13. Comparison between circuit simulation and measurements, showing the steady-state thermal resistance of LFPAK88 on PCBs clamped to a constant cooled cold plate

After their creation, these Cauer models then underwent validation against real measurements in a circuit simulator and from Fig 13, they are seen to bear close resemblance to each other. This demonstrates that the PCB Cauer models are able to provide precise and rapid estimations of MOSFET thermal behaviour. This is a huge advantage and reduces the need for designers to perform physical measurements or complex CFD simulations that either require physical prototypes and heavy computational resources. Nexperia intends to expand the library of PCB Cauer models to cover more PCB types to further aid designers in the future.

7. Summary

This interactive application note has shown the huge variability of the parameter Rth(j-amb) and the challenges faced by design engineers to ensure applications can cope with thermal losses. The study has shown that if a designer is able to decrease the thermal resistance of the PCB through methods such as increasing copper area, thermal vias and using high conductivity materials, smaller MOSFETs can exhibit similar thermal performance to larger MOSFETs under natural convection.

Device level thermal performance is readily available from manufacturers. However, the thermal performance of a MOSFETs can vary hugely in different applications and product designs. This study was initiated with the intent to help designers in their initial design phases where PCB layout and construction is not yet known. The intention was to give users precise thermal estimation tools that are easily accessible and easy to use compared to lengthy measurement and CFD simulation methods.

From this study, Nexperia has managed to create a library of PCB Cauer models across several package types for constant cooled and natural convection scenarios to show the user the variability of thermal performance depending on user design. The results of which aim to streamline the thermal design process and decrease the time taken for designers to create new products. These PCB Cauer models are free to access on Siemens PartQuest along with Nexperia electrical and Precision Electrothermal Models.

A PartQuest embedded Cloud simulation was used in this interactive application note.

References

[1] AN90003, LFPAK MOSFET thermal design guide, Nexperia.

[2] JESD51-14, Transient Dual Interface Test Method for the Measurement of the Thermal Resistance Junction-to-Case of Semiconductor Devices with Heat Flow Through a Single Path, JEDEC SOLID STATE TECHNOLOGY ASSOCIATION.

[3] JESD51-2A, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air), JEDEC SOLID STATE TECHNOLOGY ASSOCIATION.

[4] AN11261, RC thermal models, Nexperia.

Page last updated 15 April 2024.

 

免费黄色日韩在线观看| 欧美一级久久久一区二区| 国产一二三在线不卡视频 | 一区二区三区毛片国产一区| 日韩av不卡在线播放| 国产一区日韩精品二区| 人妻熟女一区二区三区在线| 91麻豆国产自产在线观看亚洲| 国产a级久久久精品视频| 黄色三级电影在线入口| 饥渴少妇高潮露脸嗷嗷叫| 国产爽又爽视频在线观看| 欧美日韩艺术电影在线| 美艳人妻办公室抽搐呻吟| 视频一区中文字幕在线观看| 国产美女人喷水在线观看| 精品国产美女福到在线不卡| 精品人妻一区二区三区mp4| 日韩欧美亚洲精品成人| 欧美三级视频一区二区三区 | 痴女av一区二区三区| 人妻久久久一区二区三区视频| 国产欧美日韩综合精品二区| 操逼啊口爆啊rrr中途啊免费| 国产日韩欧美第一区二区| 要肉棒插死骚货黄色视频| 亚洲香蕉大尺码专区在线直播 | 色哟哟在线观看中文字幕| 日韩AV在线一区二区三区合集| 亚洲高清在线精品一区二区 | 我爱美女小骚骚的小骚逼| 免费观看又色又爽又黄的| 少妇一夜一次一区二区| 国产欧美日韩综合精品二区| 中文亚洲精品在线观看| 丰满人妻av一区二区| 日本一区二区免费在线不卡 | 久久a天堂av福利免费播放| 日韩成人a片一区二区三区| 国产精品女同性一区二区| 国产精品91福利一区二区三区| 美国黑人大屌操白美女小逼逼| 欧美日韩亚洲人妻在线| 国产片高潮抽搐喷水免费| 看中文字幕一区二区三区 | 国产一区日韩精品二区| 男人猛躁进女人免费播放视频| 亚洲av永久无码青青草原| 欧美视频中文字幕视频日韩视频| 少妇 特黄一区二区三区| 亚洲最新尤物在线视频| 国产精品三级精品国产50| 成人国产激情自拍视频| 99久久婷婷国产综合精品免费| 日韩欧美在线观看黄色| 一本色道久久亚洲av红楼| 呃呃啊啊啊好爽快到了黄色| 国产视频久久久久久久久久久| 中文字幕人妻丝袜一区一三区| 抖阴视频啊啊啊好舒服大鸡吧| 日韩三级中文字幕不卡| 午夜伦理激情福利视频| 亚洲精品免费观看91| 国产真实乱免费高清视频 | 亚洲一级特黄大片婷婷| 激情文学婷婷六月开心久久| 小骚货被打桩啊啊骚叫视频网页| 青青草青青草在线观看视频| 午夜男女爽爽刺激视频在线观看 | 中文字幕一区二区三区乱码人妻| 日韩天堂视频在线播放| 波多野结衣AV在线无码播放| 男人天堂一区二区av| 太大太粗好爽受不了视频| 国产视频一区二区三区免费看| 大香蕉在线大香蕉在线大香蕉在线| 男人下面插入女生下面啊啊啊视频 | 思思99热这里只有精品| 美女无套内射粉嫩99内射| 欧美国产大片一区视频| 国产精品三级精品国产50 | 国产男女高清视频在线| 淫荡骚货想让我射进她的骚穴视频| 五月天丁香花婷婷狠狠热| 能看美女逼的网页免费看| 男人抚摸亚洲女大学生的大胸 | 男人捅开女人的逼国语对白| 91久久精品一区二区三区色欲| 韩国三级伦理在线观看| 国产精品亚洲综合第一区| 国产一卡在线免费观看| 国产真实乱免费高清视频| 国产成人欧美一区二区三区的| 日韩av中有文字幕在线观看| 国产 中文字幕 欧美 日韩| av日韩精品在线观看| 日韩亚洲一区二区三区中文字幕 | 国产午夜福利在线观看红色一片天| 欧美激情日韩精品久久久| 欧美一区二区三区裸体| 在线免费看片国产精品| 国产传媒小视频在线观看| 最新推荐久久伊人久久久| 欧美日韩国产一二三四区永久在线| 五月天丁香婷婷一区二区| 久久精品国产欧美电影| 国产白嫩无套视频在线播放蜜桃| 野花视频在线观看免费高清版 | 在线播放国产精品自拍| 久久亚洲精品专区蓝色区| 手机免费av片在线观看| 夜夜爽狠狠天天婷婷五月| 日韩亚洲一区二区三区中文字幕 | 男人下面插入女生下面啊啊啊视频| 女生的小鸡鸡啊啊少妇初三| 中文字幕婷婷丁香色五月| 久久洲Av无码西西人体| 999国产精品永久免费视频| 正在播放国产呦精品系列| 精品国产一区二区三区蜜殿最| 不要抽骚货的骚逼了视频| 92午夜福利在线视频| 男人把鸡鸡捅进美女屁骨里| 亚洲欧美日韩一区二区三区情侣| 久久久久精品午夜理论片| 美国妓女与亚洲男人交配视频| 久热这里只有精品视频4| 五月天丁香婷婷狠狠狠| 亚洲另类激情综合偷自拍| 国产又猛又黄又爽无遮挡| 91免费精品国产拍在线| 天天操操夜夜操97| 9久精品久久综合久久超碰1| 成人两性生活免费视频| 人妻人人澡人人添人人爽桃色| 亚洲欧洲一级av一区二区久久| 日韩欧美在线观看黄色| 好吊妞人成视频在线观看| 可以在线观看的黄色av| 国产97在线精品一区| 精品久久只有精品做人人| 国产999精品老熟女唐老鸭 | 青青青国产在线观看资源| 亚洲熟女乱一区二区精品成人| 鸡鸡插进骚逼视频欧美996 | 一区二区三区毛片国产一区| 国产免费啪嗒啪嗒视频看看| 一本大道加勒比久久综合| 国际b站免费直播入口MBA智库| 无码不卡免费中文字幕在线视频| 91男厕偷拍男厕偷拍高清| 少妇高潮喷水久久久久久久久久| 天天操操夜夜操97| 日日摸夜夜添夜夜添亚洲女人| 欧美日韩精品成人影院| 国产一级性生活片免费观看| 蜜桃久久精品一区二区| 午夜伦理激情福利视频| 亚洲综合色一区二区三区蜜臀| 呃呃啊啊啊好爽快到了黄色| 人妻熟女一区二区aⅴ在线视频| 国内揄拍国内精品久久| 男人插女人鸡在线污视频观看 | 在线免费看黄国产精品| 五月婷婷久久综合激情| 国产人成91精品免费观看| 大香蕉在线大香蕉在线大香蕉在线| 亚洲天堂自拍偷拍韩日美| 国产在线乱码一区二区三区潮浪| 高潮颤抖大叫正在线播放| 66mio人妻精品一区二区三区| av在线中文字幕乱码| 日韩精品在线视频vvv| 黄色三级电影在线入口| 亚洲一区二区三区精品久久av| 国产天堂av在线免费观看| 男人下面插入女生下面啊啊啊视频 | 大鸡巴操美女骚逼嫩穴视频| 波多野结衣在线观看一区二区三区| 国产综合精品一区二区| 国内揄拍国内精品少妇国语麻豆| 国产福利精品蜜臀91啪| 欧美日韩视频在线综合| 欧美激情日韩精品久久久| 国产爽又爽视频在线观看| 亚洲国产av一区二区三区| 老頭搡老女人毛片視頻在錢看| 亚洲AV永久无码精品蜜芽| 色综合色综合色综合天天上班| 不要抽骚货的骚逼了视频| 亚洲av永久无码青青草原| 日本一区二区三区精品视频在线| 久久综合九色综合97| 激情五月天丁香啪啪综合| 日本一区二区高清视频在线观看 | 鸡鸡插进骚逼视频欧美996| 久久999国产高清精品| 五月婷婷六月丁香激情综合网| 把体操服美女摁在桌上操| 男人捅开女人的逼国语对白| 日本精品一线在线观看| 成人依依网站亚洲综合久| 精品国产三级国产普通话| 免费 无码 国产在线观| 国产精品一级二级三级视频| 在线不卡视频国产观看| 欧美一区二区三区爽爽爽| 国产精品免费av在线播放| 国产自拍偷拍在线福利| 黄色三级电影在线入口| 麻豆回家视频区一区二| 欧美逼逼一区二区三区| 国产郑州性生活免费| 日韩精品少妇专区人妻系列| 丰满人妻av一区二区| 曰本精品人妻久久久久久| 中文字幕有码人妻在线| 欧美午夜精品福利在线观看| 日韩美女一区二区三区在线观看| 久久婷婷好好热日本手机| 视频一区中文字幕在线观看| 啊啊啊啊啊啊啊啊操我啊啊啊免费| 国产熟女激情视频自拍| 国产大陆日韩一区二区三区| 欧美亚洲另类久久综合婷婷| 深夜福利一区二区在线观看| 日韩情色电影中文字幕| 日韩av天堂手机在线观看| 一级做a爰片久久毛片毛片| 搡女人真人视频不用下载 | 国产肥熟女老太老妇A片| 欧美精品在欧美一区二区三区| 草骚逼美穴骚逼美穴骚逼美穴骚逼| 四房色播五月天婷婷丁香| 亚洲人尤物视频在线观看| 日韩三级中文字幕不卡| 丰满人妻av一区二区| 春色校园激情综合另类| 在线观看日本一区二区三区四区| 日本熟妇的诱惑中文字幕| 性感骚女爆射搞基喷水操软件下载| 久久综合中文字幕一区二区| 国产在线播放精品一区| 日本黄色中文字幕不卡在线| 亚洲成人av免费在线看| 国产超级碰碰人在线播放| 男人抚摸亚洲女大学生的大胸 | 久久精品国产欧美电影| 久青草视频在线免费观看| 久久精品国产99久久6动漫欧| 国产乱码精品一区二区三区麻一豆| 男人抚摸亚洲女大学生的大胸| 久久国产精品免费看小草| 女性下体被男性猛进猛出的视频 | 天堂av毛片免费在线看| 成人国产亚洲欧美日韩| 国产草莓视频无码a在线观看| 国产午夜精品一区二区三区视频 | 色哟哟在线观看中文字幕| 在线观看性生活免费看| 色吊丝最新永久免费观看| 国内综合视频一区二区三区| 18禁止免费网站免费观看| 欧美日韩另类精品激情| 色欲永久无码精品一二三区| 人妻在线有码中文字幕| 999国产精品永久免费视频| 伊人久久大香线蕉亚洲日本强 | 午夜亚洲理论片在线观看| av男人在线东京天堂| 日本熟妇内射一区二区| 色哟哟一区二区三区四区视频 | 日本人疯狂干大鸡巴爽歪歪视频| 亚洲va久久久久久久精品综合| 伊人久久综合大杳蕉中文无码| 亚洲av日韩av天堂无码| 美日韩一级片欧美一级片| 美国黑人大屌操白美女小逼逼 | 亚洲精品在线韩国日本| 国产传媒天美av一区二区三区| 一区二区三区欧美影片| 日韩 国产 精品 亚洲 欧美| 粉嫩女大学生自慰喷水白虎小穴| 成人依依网站亚洲综合久| 91午夜精品福利在线亚洲| 人妻久久久一区二区三区视频| 亚洲精品国产成人综合免费| 青青河边草视频在线观看| 正在播放女子高潮大叫要| av天堂天堂av日韩| 免费黄色日韩在线观看| 亚洲精品不卡一二三区| 色噜噜狠狠狠综合曰曰曰 | 中文字幕日韩精品免费看| 欧美日韩一级二级三区高清视频| 国产传媒小视频在线观看| 水蜜桃在线精品视频网| 大陆猛男大鸡巴操骚美女骚逼视频| 欧美精品久久天堂久久精品| 国产成+人+亚洲+综合| 国产精品三级精品国产50| 亚洲AV元码天堂一区二区三区| 插烧女人屁眼视频在线观看| 十八禁真人无摭挡观看| 日韩特黄特色大片免费看| 正在播放干熟妇久久精品视频一本| 自由成熟性生活免费视频| 久久这里只有视频精品| 四虎永久在线精品视频免费观看| 91福利国产在线观看香蕉| 国产日本亚洲一区二区| 欧美一区二区三区爽爽爽| 大白屁股精品视频国产| 九九最新视频免费观看九九视频| 天天操操夜夜操97| 国产成人精品无人区一区| 国内精品久久人妻白浆| 亚洲国产精品毛片av在线下载| 欧美人妻少妇精品久久| 日本一区二区高清视频在线观看| 亚洲精品一区二区三区小| 男人的天堂av免费社区| 大鸡巴用力抽插骚逼视频| 香蕉成人伊视频在线观看| 美女脱光衣服露出奶头和尿头吊嗨| 黄片视频在线观看国产| 日韩在线国产一区二区| 哺乳一区二区久久久免费| 好吊妞一样的免费视频| 午夜福利十八周岁成人| 亚洲一区二区三区网址| 中国一级毛片免费看视频| 国产精品中文字幕日韩精品| 国产午夜福利导航在线| 公车好紧好爽再搔一点浪一点| 精品国产尤物黑料在线观看 | 91大香蕉大香蕉尹人在线| 欧美a级黄色中文字幕手机在线| 正在播放女子高潮大叫要| 日韩精品视频在线观看的| 国产三级精品在线不卡| 久久免费看美女高潮视频| 懂色av免费在线播放| 大鸡巴用力抽插骚逼视频| 99热这里只有精品网站| 偷拍偷窥女厕一区二区视频| 丝袜美腿亚洲一区二区| 国产非洲一区二区三区久久久久久 | 国产午夜精品一区二区三区视频 | 午夜免费福利视频一区| 亚洲AV无码一区二区三区五月天| 亚洲一区二区天堂在线| 亚洲AV无码一区二区三区五月天| 国产富婆高潮一区二区| 欧美成人三区四区在线观看| 天天操夜夜一操免费看| 日本不卡二区在线观看| 亚洲欧美日韩偷拍丝袜| 亚洲香蕉大尺码专区在线直播| 国产精品日韩中文字幕| 夫妻性生活视频在线直播| 乱淫一区二区三区麻豆| 大鸡巴厂长狂操女人的无毛小逼 | 无码不卡免费中文字幕在线视频| 在线播放国产精品口爆| 亚洲av情网站在线观看| 亚洲国产不卡av在线| 99国产欧美久久久精品蜜桃| 日本成年人大片免费观看| 91福利国产在线人成观看| 一区二区三区亚洲免费看| 亚洲天堂av在线观看免费| 男人捅开女人的逼国语对白| 久青草视频在线免费观看| 欧美日韩艺术电影在线| 玖玖资源网站最新网站| 99精品视频看国产啪视频新 | 91日本精品免费在线视频| 51短视频精品全部免费| 国内午夜精品视频在线观看| 国产日本草莓久久久久久| 男人把女人捅到爽爆免费视频| 日韩在线中文字幕三区| 精品久久久久久中文字幕网 | 国产另类在线欧美日韩| 波多野结衣在线观看一区二区三区| 成人深夜在线观看免费视频| 大屌骚逼射精发情少妇鸡巴| 国产精品欧美精品日韩精品| 国产视频一区二区三区免费看 | 久久亚洲精品专区蓝色区| 91久久国产精品91久久性色| 扫码观看视频的二维码怎么生成| 亚洲AV永久无码精品蜜芽| 久久精品国产欧美电影| 啊啊草死我爽日本在线观看| 精品久久国产蜜臀色欲69| 日韩一区二区在线精品| 免费成人在线不卡视频| 在线观看日本一区二区三区四区| 午夜视频国产一区二区三区| 好男人视频精品一二三区| 美女扒开大腿让人桶免费看| 中文字幕中文字幕乱码| 鸡鸡插进骚逼视频欧美996| 久久人妻久久人妻涩爱| 厕所偷拍一区二区三区| 黑人精品一区二区三区av| 在线观看日韩一区二区视频| av天堂天堂av日韩| 久久综合九色综合本道| 亚洲综合国产伊人五月婷| 精品国精品国产av自在久国产| 黄色视频一边摸上面一边插下面| av网站在线观看亚洲国产| 欧美一区二区三区最新| 搡女人真人视频不用下载| 国产传媒天美av一区二区三区| 又色又爽又黄的视频大全| 卡通动漫一区二区综合| 中文字幕人妻少妇久久| 日韩欧美在线观看黄色| 99久久视频久久热视频| 久久久无码精品亚洲日韩18禁| 男人的天堂社区东京热| 国产免费成人在线观看视频 | 美国俄罗斯毛片一区二区| 男生鸡巴操女生逼逼视频。| 动漫无遮羞视频在线观看| 亚洲一区国产午夜福利| 2022AV亚洲天堂在线观看| 日韩欧美黄片在线播放| 日本不卡二区在线观看| 草欧美女高中生的大逼喷水高清| 亚洲毛片成人在线观看| 久久精品国产亚洲AV麻豆蜜芽| 日本不卡二区在线观看| 一本大道加勒比久久综合| 欧美人妻一区二区三区88av| 春色在线观看中文字幕91| 久草手机在线观看视频| 精品欧美激情一区二区三区| 日本视频一区二区免费在线观看 | 人妻激情人妻交换一区| 中文字幕黄色片在线观看| 正在播放干熟妇久久精品视频一本 | 欧美美女真人全裸外阴大阴口日逼| 亚洲国产欧美日韩各类| 久热热久这里只有精品国产| 成年免费A级毛片天天看| 俄罗斯美女扒开B口B毛男人玩吗| 99视频在线观看免费的| 99爱在线精品视频免费观看9| 成人一区二区三区在线观看| 日韩欧美亚洲精品成人| 美女主播视频福利一区二区| 亚洲欧美国产专区在线观看| 91在线免费在线观看| 嗯啊不要用力操逼视频cable| 国产最新视频一区二区三区| 亚洲天堂自拍偷拍韩日美| 久久国产综合尤物免费观看| 成人精品一区二区三区不卡| 寂寞少妇让水电工爽了一| 女优日本中文字幕五十| 免费日韩av网在线观看| 日本免费一区二区三区视频在线播放 | 精品国产一区二区三区卡| 中文字幕有码人妻在线| 日韩欧美一级a特黄大片| 午夜福利观看在线观看| 久久免费亚洲免费视频| 人妖系列中文字幕欧美系列 | 手机在线免费观看亚洲黄色av | 扫码观看视频的二维码怎么生成| 久久999热这里的精品| 中文字幕黄色片在线观看| 国产人妻久久精品二区三| 人妻少妇精品视频区二| 公侵犯人妻中文字幕一区| 欧美日韩一级二级三区高清视频| 色久悠悠在线观看视频| 在线精品国产亚洲av日韩| 国产精品高颜值18禁| 搜索黑人性欧美大战久久| 国产精品91福利一区二区三区| 国产精品日韩中文字幕| 中文字幕乱码一区久久麻豆蜜芽 | 色婷婷亚洲一区二区在线| 91中文字幕国产精品| 男人大丁丁射精AV汇编| 猛男人插女人逼里面操逼| 伊人成人在线高清视频| 中文字幕一区二区三区乱码| 国产女人av一级一区二区三区 | 国产视频久久久久久久久久久| 国产av人人夜夜澡人人爽软件| 艳妇臀荡乳欲伦69调教视频| 能看美女逼的网页免费看| 欧美成人动漫免费在线观看| 国产成人精品无人区一区| 三级片无码高清免费国产| 欧美日韩另类精品激情| 中文字幕亚洲精品激情欧美| 男人插女人鸡在线污视频观看| 国产精品无码久久综合网 | 无码不卡免费中文字幕在线视频| 91蜜桃臀久久一区二区| 把体操服美女摁在桌上操| 少妇人妻与黑人精品免费视频 | 中文字幕av无码不卡二区| 正在播放干肥熟老妇视频| 美女被鸡巴插入喉咙视频在线| 人妻少妇被猛烈进入中出视频| 欧美91精品国产自产在线| 中文字幕一区二区人妻秘书| 日韩精品女性三级视频| 男人猛躁进女人免费播放视频| 97精品日韩欧美一区二区三区 | 92午夜福利在线视频| 扫码观看视频的二维码怎么生成| 18出禁止看的色视频| 国产传媒第一页在线观看| 国产性色av一区二区| 天堂av毛片免费在线看| 男人大鸡巴插进美女逼里视频强奸 | 香港三日本三韩国三欧美三级 | 91日本精品免费在线视频| 亚洲综合色一区二区三区蜜臀| 欧美日韩一区二区人妻| 一本到中文无码AV一区| 国产美女极度色诱视频| 强插少妇视频一区二区三区| 午夜伦理激情福利视频| 韩国三级伦理在线观看| 久久久亚洲国产精品一区| 日本视频一区二区三区观看| 国精产品一品二品国精品| 久久精品国产在热亚洲| 美女被鸡巴插入喉咙视频在线| 成人日韩精品在线观看| 美女av一区二区三区| jk黑丝白丝国产精品| 欧美亚洲区一区二区三区| 国产男女猛进猛出粗暴啊| 色偷拍亚洲偷自拍视频| 日本黄色中文字幕不卡在线| 好吊妞一样的免费视频| 日本黄色一区二区三区| 大屌骚逼射精发情少妇鸡巴| 免费观看又色又爽又黄的| 国产无遮挡又爽免费视频| 色橹橹欧美在线观看视频高清免费| 在线亚洲91成人在线视频视频| 欧美日韩午夜在线一区| 亚洲欧美另类丝袜在线| 欧美日韩午夜在线一区| 男生把小鸡鸡插到女生阴巢的视频 | 久久综合九色综合色多多| 欧美激情日韩精品久久久| 日本免费一区二区三区视频在线播放| 亚洲国产中文剧情av鲁一鲁| 国产精品为爱搞点激情| 日本人妻免费在线观看| 91午夜精品福利在线亚洲| 91午夜精品福利在线亚洲| 国产在线观看码高清视频| 插日日操天天干天天操天天透| 欧美高清精品视频在线| 公侵犯人妻中文字幕一区| 男女鸡巴插黄激情视频欧美| 给我播放免费在线视频| 十八禁真人无摭挡观看| 成人经典视频免费在线| 欧美日韩国产一区二区的| 正在播放干肥熟老妇视频| 97精品在线全国免费视频| 国产999精品老熟女唐老鸭| 国产裸体美女永久免费无遮挡| 美女被大鸡巴插男内射欧美| 大鸡巴用力抽插骚逼视频| 色欲永久无码精品一二三区| 欧美激情网页一区三区| 无码人妻精品丰满熟妇区| 看蓝色的鸡巴搞进去女人的逼里面| 亚洲一级毛片免费在线观看| 大白屁股精品视频国产| 国产一二三在线不卡视频| 老頭搡老女人毛片視頻在錢看| 在线不卡视频国产观看| 日本欧美高清乱码一区二区| 激情一区二区三区四区| 干黑丝袜美女的小骚穴影片 | 日韩在线精品国产一区二区| 日韩精品女性三级视频 | 亚洲香蕉大尺码专区在线直播| 亚洲熟女国产午夜精品| 91男厕偷拍男厕偷拍高清| 国产日韩欧美亚洲专区| 美女av一区二区三区| 中文字幕有码视频推荐| 男人机巴操女人骚穴视频| 社保交够15年可以辞职等退休吗| 国产精品高颜值18禁| 啊用力快点我高潮了视频| 久久精品久久精品伊人69| 欧美成人综合在线观看视频| 久久精品国产91麻豆| 五月婷婷六月丁香亚洲综合| 男生大肉捧插女生的视频| 色哟哟一区二区三区四区视频| 插逼咬奶头流白浆喷尿视频| 日韩精品在线小视频| 国产在线观看一区二区三| 哺乳一区二区久久久免费| 国产精品一区二区亚洲推荐| 祼体美女上厕所被操视频APp| 999国产精品永久免费视频| 亚洲日本精品熟女视频| 成人福利在线免费观看视频| 正在播放国产呦精品系列| 99国产欧美久久久精品蜜桃| 国产精品中文一区二区| 又黄又爽有无遮挡的网站| 日本高清少妇一区二区三区 | 久久久午夜福利免费视频 | 亚洲天堂一区二区免费不卡| 国产91精品系列在线观看| 亚洲国产欧洲综合997| 一本在线视频中文免费看| 精品自拍视频国产免费自拍视频| 乱淫一区二区三区麻豆| 正在播放国产无套露脸视频| 青青草99久久这里只有精品| 天堂av一二三区在线播放| 91亚洲欧美综合高清在线| 成人性生活视频在线观看| 午夜福利十八周岁成人| 国内精品久久人妻白浆| 超碰人人爽爽人人爽人人| 国产精品午夜久久久久久久密桃| 国语成人高清在线观看| 正在播放干肥熟老妇视频| 国产日韩欧美亚洲专区| 午夜伦理激情福利视频| 黄色三级电影在线入口| 五月婷婷在线直播视频免费观看 | 久久综合亚洲一二三区| 中文字幕人妻高清乱码| 美女无套内射粉嫩99内射| 日韩亚洲在线观看视频| 91九色视频在线观看| 国内综合视频一区二区三区| 丰满人妻连续中出中文字幕在线| 日韩成人a片一区二区三区| 久久久久久无码精品大片| 日本肥老熟妇在线观看| 91中文字幕国产精品| 看男生和女生插小鸡鸡的软件| 91福利国产在线观看香蕉| 日本不卡二区在线观看| 99尹人香蕉国产免费天天拍| 亚洲一区二区三区中文| 国产精品高清无遮挡网站| 视频一区中文字幕在线观看| 一区二区三区欧美影片| 亚洲精品成人中文字幕| 黄色三级电影在线入口| 美女被黑人鸡巴草的爱液狂溅| 无码系列久久久人妻无码系列| 不卡久久精品国产亚洲av不卡| 精品国产尤物黑料在线观看 | 中文字幕亚洲欧美日韩在线不卡| 99精品视频看国产啪视频新| 韩国三级伦理在线观看| 美日韩成人av免费久久| 天堂av一二三区在线播放| 全部免费特黄特色大片看片| 操逼激情破处大鸡吧插进| 99国产精品九九视频免费看| 国产偷国产偷亚洲高清| 懂色av噜噜一区二区| 在线日韩人妻高清在线| 美日韩一级片欧美一级片| 日本一道本日韩精品欧美| 探花农村老头操老妇说话对白| 在线播放国产精品自拍| 欧美日韩人妻精品一区二区在线 | 人成网av精品自在自拍| 日本女优禁断视频中文字幕| av日韩精品在线观看| 欧美91精品国产自产在线| 超碰插你激情免费在线| 蜜臀av国内精品久久久久久久久| 国产成人精品无人区一区| 国产免费av片在线观看| 91精品久久久老熟女九色9| av日韩精品在线观看| 在线播放日本国产精品| 国产精品有码av在线| 国产一区二区三区粉穴| 日韩欧美一级a特黄大片| 免费 无码 国产在线观| 亚洲精品国产欧美成人| 一区二区三区欧美影片| 午夜男女爽爽刺激视频在线观看| 亚洲成人av免费在线看| 性感骚女爆射搞基喷水操软件下载 | 高清日韩久久久一区二区| 日韩在线一区精品视频漫画| 中文字幕久久久人妻人区| 亚洲卡通动漫精品中文在线观看| 亚洲综合色成人影院| 久久久无码精品亚洲日韩18禁 | 精品国产尤物黑料在线观看 | 欧美精品午夜福利不卡| 大鸡巴厂长狂操女人的无毛小逼| 黄色视频一边摸上面一边插下面 | 精品一区二区三区久久| 日本在线免费播放一区| 97人妻碰碰碰久久久久免费| 91午夜精品福利在线亚洲| 正在播放国产无套露脸视频| 国产郑州性生活免费| 午夜福利宅福利国产精品| 精品日韩av在线免费观看| 国产一二三在线不卡视频| 欧美国产大片一区视频| 美日韩一级片欧美一级片| 亚洲男人天堂在线免费| 亚洲一区二区黄色录像| 91中文字幕在线永久| 色哟哟在线观看中文字幕| 久久久精品欧美中文一区二区三区| 国产蜜臀大码av影院| 男人插女人鸡在线污视频观看| 亚洲一区国产午夜福利| 亚洲精品中文有码字幕| 国产一区二区三区三洲| 国产自产拍午夜免费视频| 日本黄大片538视频| 九九热视频大全精品免费| 未满十八禁止在线播放| 男女激情视频网站免费在线| 精品欧美激情一区二区三区| 国产精品91福利一区二区三区| 国产精品九色蝌蚪自拍| 日本人妻免费在线观看| 日韩特黄特色大片免费看| 亚洲日本国产乱码va在线观看| 久久久精品国产精品久久| 美女国产黄色三级片在线播放| 欧美91精品一区二区三区| 97精品伊人久久大香| 日韩在线国产一区二区| 免费在线观看国产不卡| 又黄又爽有无遮挡的网站| 国产精品成人久久综合| 国产91手机在线播放青青| 性生活免费在线观看视频| 自拍偷在线精品自拍偷蜜臀| 欧美人妻精品一区二区三区99 | 亚洲av日韩av高清在线播放| 91在线免费在线观看|