操逼啊口爆啊rrr中途啊免费-中文字幕av网一区二区-中文字幕久久精品波多野结百度-国产三级视频在线观看

雙極性晶體管

二極管

ESD保護(hù)、TVS、濾波和信號調(diào)節(jié)ESD保護(hù)

MOSFET

氮化鎵場效應(yīng)晶體管(GaN FET)

絕緣柵雙極晶體管(IGBTs)

模擬和邏輯IC

汽車應(yīng)用認(rèn)證產(chǎn)品(AEC-Q100/Q101)

Power density, RDS(on) and miniaturization

通過大量投資于研發(fā),我們持續(xù)不斷地利用先進(jìn)的小信號和功率MOSFET解決方案擴(kuò)充我們的產(chǎn)品組合。我們種類齊全的產(chǎn)品組合提供當(dāng)今市場所需的靈活性,讓您可以輕松選擇最適合您系統(tǒng)的產(chǎn)品。我們市場領(lǐng)先的技術(shù)確保提供最高的可靠性和性能,而先進(jìn)的封裝則可以增強(qiáng)電阻和熱性能,同時縮小尺寸,降低成本。

精選產(chǎn)品

Focus Product Families

最新新聞和博客

  • 博客文章
7月 4, 2022

Switch on with tiny MOSFETs

參數(shù)搜索

MOSFETs
數(shù)據(jù)加載中,請稍候...
參數(shù)搜索不可用。

Get MOSFETs suggested based on your application

With over 900 products in our portfolio – you don’t need to be an expert in MOSFETs to select the device with the best performance for your requirements. Specify your application below, put in your conditions and get three MOSFETs suggested. The suggestions are based on results from spice simulations with the top three best performing devices shown.

版本 名稱 描述 安裝方法 表面貼裝 引腳 間距(mm) 占位面積(mm2) PDF
Visit our documentation center for all documentation

Application note (32)

文件名稱 標(biāo)題 類型 日期
AN90059.pdf Power MOSFET gate driver fundamentals Application note 2025-09-10
AN90011.pdf Half-bridge MOSFET switching and its impact on EMC Application note 2025-09-10
AN50019.pdf Thermal boundary condition study on MOSFET packages and PCB substrates Application note 2025-09-10
AN50002.pdf Automotive LED side light SEPIC DC-to-DC converter design example Application note 2025-09-10
AN11261.pdf RC Thermal Models Application note 2025-09-10
AN11160.pdf Designing RC Snubbers Application note 2025-09-10
AN11158.pdf Understanding power MOSFET data sheet parameters Application note 2025-09-10
AN10273.pdf Power MOSFET single-shot and repetitive avalanche ruggedness rating Application note 2025-09-10
AN90046.pdf CCPAK1212i Design Guide Application note 2025-09-08
AN90016.pdf Maximum continuous currents in NEXPERIA LFPAK power MOSFETs Application note 2025-09-08
AN90001.pdf Designing in MOSFETs for safe and reliable gate-drive operation Application note 2025-09-08
AN50014.pdf Understanding the MOSFET peak drain current rating Application note 2025-09-08
AN50006.pdf Power MOSFETs in linear mode Application note 2025-09-08
AN11243.pdf Failure signature of Electrical Overstress on Power MOSFETs Application note 2025-09-08
AN11156.pdf Using Power MOSFET Zth Curves Application note 2025-09-08
AN90034.pdf Nexperia Precision Electrothermal models in SPICE and VHDL-AMS for Power MOSFETs Application note 2025-09-01
AN90003.pdf LFPAK MOSFET thermal design guide Application note 2025-09-01
AN50003.pdf Driving solenoids in automotive applications Application note 2025-04-09
AN50020.pdf MOSFETs in Power Switch applications Application note 2024-05-27
AN50005_translated_20230317.pdf 大電力アプリケーションにおけるパワーMOSFETの並列接続 Application note 2023-04-03
AN50009.pdf Power MOSFET applications in automotive BLDC and PMSM drives Application note 2022-07-05
AN90032.pdf Low temperature soldering, application study Application note 2022-02-22
AN50001.pdf Reverse battery protection in automotive applications Application note 2021-01-12
AN11158_ZH.pdf Understanding power MOSFET data sheet parameters Application note 2021-01-04
AN90023.pdf Thermal performance of DFN packages Application note 2020-11-23
AN90017.pdf Load switches for mobile and computing applications Application note 2020-09-02
AN90019.pdf LFPAK MOSFET thermal resistance - simulation, test and optimization of PCB layout Application note 2020-07-20
AN10441.pdf Level shifting techniques in I2C-bus design Application note 2020-02-11
AN90009.pdf Leakage of small-signal MOSFETs Application note 2019-11-08
AN11599.pdf Using power MOSFETs in parallel Application note 2016-07-13
AN11119.pdf Medium power small-signal MOSFETs in DC-to-DC conversion Application note 2013-05-07
AN11304.pdf MOSFET load switch PCB with thermal measurement Application note 2013-01-28

Leaflet (18)

文件名稱 標(biāo)題 類型 日期
nexperia_document_CCPAK_MOSFETs_2025.pdf CCPAK MOSFETs leaflet Leaflet 2025-09-18
nexperia_document_CCPAK_MOSFETs_2025-CHN.pdf CCPAK MOSFETs leaflet CHN Leaflet 2025-09-18
nexperia_document_leaflet_IDs_2024_CHN.pdf nexperia_document_leaflet_IDs_2024_CHN Leaflet 2024-09-12
nexperia_document_leaflet_IDs_2024.pdf nexperia_document_leaflet_IDs_2024 Leaflet 2024-09-12
nexperia_document_leaflet_DFN_Packages_Diodes_Transistors_ESD_Protection.pdf DFN Packages Diodes Transistors ESD Protection Leaflet 2024-08-26
nexperia_document_leaflet_DFN2020MD-6_2023.pdf DFN2020MD-6 Leadless package with side-wettable flanks Leaflet 2023-09-19
nexperia_document_leaflet_DFN2020MD-6_2023-CHN.pdf 帶有側(cè)邊可濕焊盤的無引腳封裝 Leaflet 2023-09-19
nexperia_document_leaflet_SsMOS_for_mobile_2022.pdf High volume small-signal MOSFETs for mobile and portables, in WLCSP and leadless DFN packages Leaflet 2022-07-04
nexperia_document_leaflet_SsMOS_for_mobile_2022-CHN.pdf 適合移動和便攜式設(shè)備的 大批量小信號MOSFET, 采用WLCSP和無引腳DFN封裝 Leaflet 2022-07-04
nexperia_document_leaflet_LFPAK88_2022_CHN.pdf LFPAK88 將功率密度提升到新高度 Leaflet 2022-03-10
nexperia_document_leaflet_LFPAK88_2022.pdf LFPAK88 - Driving power-density to the next level Leaflet 2022-03-09
nexperia_document_leaflet_DFN0606_LR_2020.pdf DFN0606 Leaflet 2020-04-15
nexperia_document_leaflet_DFN0606_CHN_2020.pdf DFN0606 Chinese Translation Leaflet 2020-04-15
Nexperia_Document_Leaflet_LFPAK33_12022020_CH.pdf LFPAK33 leaflet Leaflet 2020-03-25
Nexperia_Document_Leaflet_LFPAK33_12022020.pdf LFPAK33 shrinking the power footprint Leaflet 2020-03-25
nexperia_document_leaflet_WLCSP_201803_CHN.pdf WLCSP Chinese Translation Leaflet 2018-04-25
nexperia_document_leaflet_WLCSP_201803.pdf Small-signal MOSFETs in WLCSP - Smallest size - lowest RDS(on) Leaflet 2018-04-25
nexperia_document_leaflet_LFPAK56D_factsheet_LR_201708.pdf LFPAK56D the ultimate dual MOSFET Leaflet 2017-08-17

Marcom graphics (1)

文件名稱 標(biāo)題 類型 日期
LFPAK56_SOT669_mk.png plastic, single-ended surface-mounted package; 4 terminals; 4.9 mm x 4.45 mm x 1 mm body Marcom graphics 2017-01-28

Selection guide (1)

文件名稱 標(biāo)題 類型 日期
Nexperia_Selection_Guide_2025.pdf Nexperia selection guide 2025 Selection guide 2025-05-16

Technical note (3)

文件名稱 標(biāo)題 類型 日期
TN00008.pdf Power MOSFET frequently asked questions and answers Technical note 2025-09-10
TN90002.pdf H-bridge motor controller design using Nexperia discrete semiconductors and logic ICs Technical note 2025-02-10
TN90001.pdf LFPAK MOSFET thermal resistance Rth(j-a) simulation, test and optimisation of PCB layout Technical note 2018-05-17

User manual (3)

文件名稱 標(biāo)題 類型 日期
Nexperia_document_book_MOSFETGaNFETApplicationHandbook_2020.pdf MOSFET & GaN FET Application Handbook User manual 2020-11-05
The_Power_MOSFET_Handbook_Chinese_Version_201808.pdf The Power MOSFET Handbook - Chinese Version 201808 User manual 2019-11-12
UM90001.pdf Store and transport requirements User manual 2018-04-06

White paper (1)

文件名稱 標(biāo)題 類型 日期
Nexperia_document_whitepaper_DFN_Wave_Soldering_2020.pdf Whitepaper: Can DFNs be successfully wave soldered? White paper 2020-09-01

快速學(xué)習(xí)

在汽車安全氣囊應(yīng)用中被遺忘的MOSFET – 快速學(xué)習(xí)

快速學(xué)習(xí): 什么是LFPAK?

快速學(xué)習(xí): 低Qrr MOSFET在開關(guān)應(yīng)用中的優(yōu)勢

產(chǎn)品和技術(shù)演示

BLDC電機(jī)控制應(yīng)用中LFPAK MOSFET增加至最高電流

高電流MOSFET – 新高度

用于熱插拔應(yīng)用的增強(qiáng)型SOA技術(shù)LFPAK 5x6 ASFET

用于12V高電流電路保護(hù)應(yīng)用的LFPAK88 MOSFET

電池反向保護(hù)解決方案

為開關(guān)應(yīng)用增強(qiáng)的NextPower 100V MOSFET

Nexperia Demo展示 - 使用功率MOSFET處理高達(dá)380A的電流

Nexperia Demo展示 - 并聯(lián)MOSFET之間的平衡均流

采用LFPAK88 MOSFET的高電流三相無刷直流電機(jī)驅(qū)動應(yīng)用

Nexperia Demo展示 - 采用P溝道LFPAK56 MOSFET的汽車H橋DC電機(jī)控制參考設(shè)計

宣傳片

NextPower Live MOSFETs – 業(yè)界最佳SOA與RDS(on)

LFPAK封裝誕生20周年

如果您有支持方面的疑問,請告知我們。如需獲得設(shè)計支持,請告知我們并填寫技術(shù)支持表格,我們會盡快回復(fù)您。

請?jiān)L問我們的社區(qū)論壇聯(lián)系我們。


常見問題

Trench 6邏輯電平MOSFET的10 V VGS額定值是由我們小于1 ppm的故障率目標(biāo)決定的,這在當(dāng)時被評為最佳行業(yè)慣例。ppm故障系數(shù)未在任何數(shù)據(jù)手冊中給出,也不屬于AEC-Q101質(zhì)量標(biāo)準(zhǔn)的一部分。換言之,兩種器件可能都符合AEC-Q101標(biāo)準(zhǔn),但仍然具有不同的ppm故障率系數(shù)。

定義、表征和保護(hù)這些額定值的方法得到了改進(jìn),現(xiàn)在有可能在超過給定的10 V額定值的條件下工作。這將表示為時間、電壓和溫度的函數(shù)。進(jìn)一步說明見下文;更多詳細(xì)信息請參閱Nexperia應(yīng)用筆記AN90001。

附加信息
上述問題中有兩個關(guān)鍵詞值得進(jìn)一步探討——“額定值”和“邏輯電平”。

邏輯電平MOSFET主要用于驅(qū)動電壓為5 V的應(yīng)用
并據(jù)此進(jìn)行了相應(yīng)優(yōu)化。為了在相對較低的柵極電壓下實(shí)現(xiàn)全導(dǎo)通MOSFET和最佳導(dǎo)通電阻性能,這些MOSFET需要比以10 V VGS驅(qū)動的標(biāo)準(zhǔn)電平器件更薄的柵極氧化層。更薄的柵極氧化層會在較低的電壓下?lián)舸?,并且具有比?biāo)準(zhǔn)電平更低的額定值(完整詳情請參閱AN90001第5節(jié))。

但是在某些情況下,會為非邏輯電平應(yīng)用選擇邏輯電平MOSFET。例如,在汽車應(yīng)用中,電池電源電壓可能下降到驅(qū)動電路需要在6 V以下工作的水平。因此,MOSFET必須以低于標(biāo)準(zhǔn)電平MOSFET能夠提供的柵極電壓導(dǎo)通。相反,MOSFET柵極需要耐受約為12 V的標(biāo)稱電池電壓。

邏輯電平MOSFET適合嗎?
就性能而言,邏輯電平MOSFET不會在施加較高電壓時突然發(fā)生故障。但是,施加高于最大額定電壓的VGS會使小于1 ppm的故障率升高,因此Nexperia不會考慮在數(shù)據(jù)手冊中包含這些額定值。

通過在生產(chǎn)過程中進(jìn)行有效篩選,Nexperia消除缺陷并減少早期使用壽命故障的方法得以實(shí)現(xiàn)。作為供應(yīng)商,Nexperia致力于實(shí)現(xiàn)零缺陷和高質(zhì)量水平。因此,額定值可能會低于我們的競爭對手,他們對質(zhì)量的承諾可能不那么嚴(yán)格。Nexperia VGS的最大額定值基于在175℃下施加100%的最大(額定)電壓1000小時,故障率小于1 ppm——更多詳細(xì)信息請參閱:AN90001第4節(jié)。

當(dāng)數(shù)據(jù)手冊中的VGS額定為±20 V時,設(shè)計人員必須考慮邏輯電平MOSFET的故障率系數(shù)

Nexperia有一個模型,可用于計算較高的柵極電壓隨溫度變化的使用壽命故障率。此信息可根據(jù)要求以所計算系數(shù)的形式提供,僅供參考。

與前幾代產(chǎn)品一樣,額定值是基于滿足AEC-Q101要求而提出的。但是,Nexperia開發(fā)了一種新的測試方法,可確保在額定VGS下,整個使用壽命內(nèi)故障率小于1 ppm。這已應(yīng)用于Trench9,其VGS額定值已設(shè)置為滿足這一新要求。

附加信息
詳細(xì)說明請參閱AN90001

在Trench第3代器件(2008年)和Trench第6代器件(2012年)之間,Zth曲線的設(shè)置方法改變了。芯片尺寸也不同,這改變了Zth和Rth特性。

附加信息
較早的方法使用Zth (1 μs)和Rth的經(jīng)驗(yàn)?zāi)P鸵约爸笖?shù)線。

最新方法使用計算流體動力學(xué)(CFD)仿真生成的Zth模型,經(jīng)過了測量驗(yàn)證。

兩個器件中的芯片尺寸不同,因此Zth也不同。

圖1所示的曲線比較了單次Zth的數(shù)據(jù)手冊曲線。
兩個器件的極值線非常匹配。最大的差異是1 ms到20 ms之間的區(qū)域。

通過比較得出的結(jié)論是,Trench第3代器件用于在這些Zth限值內(nèi)工作。Trench第6代器件是一個很好的替代方案,極有可能滿足工作要求。

可以評估如何使用新規(guī)則對Trench第3代器件進(jìn)行評級,以更準(zhǔn)確地反映其真實(shí)性能。圖1表示兩條數(shù)據(jù)手冊線對比后的新線。

雖然在Rth上有一處差異,但可能并不重要。實(shí)際上,這是Rth(j-amb),是設(shè)計的限制因素。兩個器件的共性是印刷電路板(PCB)的Rth,占主導(dǎo)地位。

考慮BUK9Y30-75B的新舊測試方法時,另一個差異是小于10 μs的區(qū)域。

對于1 μs和2 μs之間的脈沖持續(xù)時間,Trench第3代器件中的溫升(或Zth(j-mb))僅為原始數(shù)據(jù)手冊曲線預(yù)測值的一半。這個因素的重要性取決于應(yīng)用。

這種理解是正確的。為確保MOSFET的可靠性,請始終將最高結(jié)溫限制在175 ℃。

附加信息

據(jù)了解,數(shù)據(jù)手冊中列出的典型熱阻值是基于受控條件得出的,不適用于典型應(yīng)用。
在半導(dǎo)體行業(yè)中,結(jié)溫為25 ℃的器件特性是公認(rèn)標(biāo)準(zhǔn)。用戶在這個溫度下進(jìn)行測量也最方便。

如何計算正確的熱阻?
Nexperia的MOSFET數(shù)據(jù)手冊中僅給出了熱阻的最大值。典型值遠(yuǎn)小于最大值。據(jù)了解,熱循環(huán)會導(dǎo)致Rth(j-mb)在MOSFET使用壽命期間增加。

數(shù)據(jù)手冊Rth(j-mb)最大值中包含了公差裕度,允許該值在MOSFET的使用壽命期間增加。

對于最壞情況的設(shè)計分析,請始終使用最大值。數(shù)據(jù)手冊中給出的最大Rth(j-mb)是通過特性測量評估得出。

其值不受溫度或其他環(huán)境條件限制。

如何計算結(jié)溫?

由于環(huán)境和/或MOSFET中的功耗引起的溫升,MOSFET通常在結(jié)溫高于25 ℃的情況下工作。

如果已知MOSFET的功耗和貼裝基底溫度(Tmb),就可以計算MOSFET的結(jié)溫。使用下面的公式(1)確定Tj。

(1) Tj = P × Rth(j-mb) + Tmb

MOSFET的SPICE熱模型提供了一種通過仿真估算Tj的好方法。在MOSFET的功耗隨時間變化時尤為有用。

BUK7Y12-40E的實(shí)例:

來自數(shù)據(jù)手冊:
25 ℃時的最大RDSon = 12 mΩ
175 ℃時的最大RDSon = 23.6 mΩ
2.31 K/W時的最大Rth(j-mb)

來自應(yīng)用數(shù)據(jù):
PWM頻率 = 100 Hz
最大占空比 = 50 % Vsupply = 14 V
Rload = 0.7 Ω
最高環(huán)境溫度 = 85 ℃
最高PCB溫度 = 100 ℃

基于平均功率計算,忽略因功率脈沖引起的任何溫度波動,也忽略100 Hz時的開關(guān)損耗:

假設(shè)MOSFET的初始溫度為100 ℃,其最大導(dǎo)通電阻為18 mΩ。它處于25 ℃時的12 mΩ和175 ℃時的24 mΩ之間。

傳導(dǎo)時,MOSFET功耗I2 X RDSon為:20 x 20 x 0.018 = 7.2 W

占空比為50%,因此平均功耗 = 7.2 x 0.5=3.6 W。假定可以忽略100 Hz時的開關(guān)損耗。

MOSFET結(jié)溫升高(貼裝基底以上)為:2.31 x 3.6 = 8.3 K。

在這種情況下,MOSFET的最高芯片溫度非常安全,為:100 + 8.3 = 108.3 ℃

為確保PCB溫度在85 ℃的環(huán)境中不會升高到100 ℃以上,PCB與環(huán)境之間的熱阻必須為:(100 - 85)/3.6 = 4.2 K/W

The customer is trying to achieve a Rth(j-amb) = 60 K/W using a dual N channel LFPAK56 (SOT1205).

Rth(j-amb) = Rth(j-mb) + Rth(mb-amb)

Rth(j-mb) is in Nexperia’s control (it is a function of the die size and package design, for example the bigger the die the lower the Rth(j-mb)). Rth(mb-amb) is a function of the PCB design and the thermal management scheme and is not under the control of Nexperia. A very good multilayer FR4 design with thermal vias would be around 30 - 40 K/W.

The Rth(j-amb) is dependent on the PCB design. As MOSFET manufacturers we do not determine this part of the system and the value would be meaningless, therefore. We have provided some examples in our application notes, please see LFPAK thermal design guide AN90003.

Rth(j-mb) tells you the temperature difference between the junction and mounting base for a given power profile. Because of the power dissipation the mounting base to ambient path will also heat up, causing the junction temperature to rise further. The junction to ambient is the full thermal path that needs to be considered and is a function of the PCB design too, please see AN90003 for more details.

The drain tab (mounting base) and source leads are the two main paths through which a down side cooling package dissipates heat. In fact, contrarily to some through hole packages (like TO-220), SMD packages such as LFPAK and D2PAK get rid of all the heat through the PCB. Hot air rises from the board and envelopes the device lowering the efficiency and thus the efficacy of any heatsink attached to the top of the plastic case. Instead, when a substantial power needs to be dissipated, copper traces, vias and planes are employed in order to lower as much as possible the Rth(j-a) of a device.

FloTHERM simulations and measurements carried out using LFPAK56 and variable power dissipation and PCB copper area show how, in steady state conditions, temperature taken on the top center of the case is, within a reasonably low accuracy, very similar to the junction temperature. This result is not due to heat being dissipated from the top of the case but rather from the one coming out of the PCB that increases the temperature of the surrounding air immediately close to the device, up to almost that of the junction.

Conduction is the predominant phenomena regulating heat flow from junction to mounting base. The resulting resistance is inversely proportional to the cross sectional area of the medium through which it propagates (die area) and directly to its thickness (drain tab). Given an LFPAK56E and an LFPAK88 with the same die size the former has lower Rth(j-mb) because the thickness of its drain tab is lower. It is worth noting, however, that the thermal path doesn't end here and that the LFPAK88 shows better thermal performances due to its lower Rth(j-amb) given by a much larger drain tab.

For a given die size the LFPAK88 shows an overall better transient thermal impedance Zth(j-mb).

The data sheet states the IS capability for the diode. The power constraints are the same as for the MOSFET conduction. The diode is an integral part of the MOSFET structure. They are in effect the same size and have the same thermal properties. The MOSFET can carry the same current through the channel or in reverse through the body diode. The maximum steady state current in the diode is dependent on the total allowed power loss for the device. However, the diode current may be different from the channel current because the power dissipation may be different under the 2 modes of operation.

When a MOSFET transitions from diode conduction to blocking state there is an additional loss, called the diode recovery charge (Qr). The Qr needs to be factored in the switching loss calculation of the application for accurate analysis. This switching transition also impacts on the EMC performance and needs careful consideration - see AN90011 and TN90003 for more details.

The most important factor in current derating or power derating is junction temperature. Tj is a function of power dissipation. Power dissipation is a function of ID current and on-state resistance (P = I^2 × R) when operating in the fully enhanced mode. It is the product of ID and VDS when operating between on and off states. The RDS(on) of a MOSFET, increases with increase in temperature. Therefore, for a given maximum power dissipation, the maximum current must be derated to match the maximum power dissipation. In Nexperia data sheets, graphs show the continuous drain current and normalized total power dissipation as a function of the mounting base temperature. These graphs can be used to determine the derating.

If current, voltage, power, junction temperature, etc. are within Nexperia data sheet limitations, no additional derating is needed. In the data sheet, there is a power derating curve based on junction temperature. Junction temperature (Tj) is one of the most important factors for reliability. Particular care should be taken to extract enough heat from the device to maintain junction or die temperature, below rated values. The device should be operated within the SOA region. It should be de-rated if necessary as recommended in the data sheet and it should be possible to obtain optimum reliability.

As an example, assume that the temperature required is 100 °C, instead of 25 °C. Tj rated is 175 °C for this automotive grade MOSFET. To de-rate when considering the effect of temperature on SOA performance the current must be reduced. To determine the new current (at temperature) for a fixed voltage, use the power derating line. For example, power at 100 °C = 50 % of power at 25 °C. Therefore, the 1.0 A line represents 0.5 A at 100 °C etc. It is explained in Application Note AN11158. If necessary, the SOA lines for 1 ms, 10 ms etc. can be extended at the same slope to the right.

The Spirito region or hot spotting issue with new higher density technologies may have more effect in the linear mode of operation. This effect is evident from the change in gradient in the limit lines for 1 ms, 10 ms and 100 ms at higher VDS values. The 1 ms, 10 ms, 100 ms and DC lines at higher VDS values emphasize it. The reason is that most newer technologies pack more parallel fundamental cells to share more current in a smaller die (lower RDS(on) per unit area). It  leads to an increased thermal coupling between cells. Also, to attain higher current densities, the MOSFETs are designed with higher transconductance or gain (gfs = ID/VGS). It enables them to carry higher currents even at lower VGS values. However VGS(th) (threshold voltage) has a negative temperature coefficient which leads to a higher zero temperature coefficient crossover value. For various reasons, the distribution of temperature in the die is never perfectly uniform. Therefore, when the device is operated for extended periods in linear mode, hot spotting occurs. Due to the shift in threshold voltage, there is a risk of thermal runaway and device destruction where the hotspots form. Because of these reasons, special care should be taken when using trench or planar MOSFETs for linear applications. Ensure that operation remains within the data sheet SOA limits.

The inflexion points on the 1 ms and 10 ms lines represent the points where the ‘Spirito’ effect starts. At higher ID, the lines represent constant power (P); at lower ID, P decreases as ID

decreases. The 100 ms and DC lines are straight, but have higher negative gradients than constant power lines, i.e. power also decreases as ID decreases. The flat portion of the DC line represents package maximum ID.

The Spirito effect is a form of electro-thermal instability i.e. uneven die heating leading to hot-spot formation. It happens because VGS(th) has a Negative Temperature Coefficient (NTC) at ID values below IZTC (zero temperature coefficient current). The consequence is to reduce MOSFET power dissipation capability in lower ID zones of the SOA chart.

Measurement at DC, 100 ms, 10 ms and 1 ms establishes SOA capability. The 100 μs and 10 μs lines on this graph are theoretical constant power lines. They are realistic, as the Spirito effect is much less significant at higher currents and shorter pulse periods.

Reliable 100 μs SOA measurement capability has recently been achieved, so future data sheets can include 100 μs SOA lines based on measured data. It is now evident that the Spirito effect is apparent at 100 μs. Consequently, from 2016, some new MOSFET releases have a measured 100 μs SOA line in their data sheet SOA graph.

See AN11158 for further information.

The factors influencing the compliance of the MOSFET with the data sheet SOA graph are:

  • the uniformity of the MOSFET cells across the active (trench) surface of the die
  • the integrity and uniformity of the die attachment (the solder layer between the die bottom (drain) surface and mounting base)

Cell uniformity must be good for the MOSFET to work. However, cell uniformity can never be perfect and there is always some variation between cells.

The integrity of the soldering to attach the die must be good without voids or die tilt. If not, the local (junction to mounting base) thermal impedance varies with location across the die. It gives uneven cooling. Uneven die surface cooling may be due to either or both of the factors stated. However, the consequence is the same i.e. SOA non-compliance with the data sheet graph.

In production, linear mode power pulse tests are used to stress the MOSFET thermally. If the die cooling is not sufficiently uniform, hotspots can form and the device parameters can change more than expected. A decision to reject parts can be made based on the results.

While all Nexperia MOSFETs can be used in linear mode operation, some Nexperia MOSFETs are designed specifically to be used in linear mode. The device description in the data sheet states that the device is suitable for operation in linear mode. To determine the suitability for operation

in linear mode, perform a thorough analysis of the SOA graph. This analysis includes derating the SOA graph for junction temperatures above 25 °C. The naming convention indicates that the MOSFET is designed for linear mode applications.

Even if a MOSFET is intended for use in linear mode applications, the part must not be operated outside its SOA. Post 2010, all Nexperia MOSFETs have a measured SOA characteristic. The limit of linear mode capability on Nexperia parts is shown in the SOA characteristic. As a result, the boundary of what is safe is established via measurement rather than calculation. The Spirito capability limit is shown in the SOA characteristic.

In general - Yes, but Nexperia Trench MOSFETs are designed to suppress this effect. The trench structure, unlike planar, can be very easily designed to suppress parasitic turn on of the BJT. For new Nexperia MOSFET technologies, the failure mechanism is thermal, which represents the limit of achievable UIS performance. In the trench case, a design feature in the source contact effectively short circuits the base-emitter of the parasitic BJT. In older planar technology, the shorting of base to emitter of the parasitic bipolar is not as effective. It is due to the longer path length in the n and p regions.

All MOSFETs are susceptible to failure during UIS. It depends on whether the MOSFET Tj reaches the intrinsic temperature of silicon. Furthermore, if the parasitic BJT is triggered, they can fail even earlier. It is because the BJT can be switched on relatively quickly but is slow to switch off. Current can then crowd in a certain part of the device and failure results. Newer Nexperia trench technologies are less vulnerable to triggering of the BJT than planar designs.

The base emitter path in the silicon design is designed to minimize the risk of triggering the parasitic BJT.

UIS testing is a fundamental part of Nexperia's defect screening procedures. It is applied to all devices. The test is designed to increase the junction temperature to Tj(max).

Devices fail at the thermal limit. At the thermal limit, the silicon becomes intrinsic and blocking- junctions cease to exist. It is considered to be the only UIS-related failure mechanism in our devices.

Avalanche current versus time graphs are based on conditions that take a device to Tj(max) and therefore, our ruggedness screening covers them. All Nexperia MOSFETs are ruggedness tested during assembly and characterized during development. The graphs are accurate and provide the worst case capability of the device to ensure reliability.

A temperature rise model is used, which is shown in AN10273 Power MOSFET single-shot and repetitive avalanche ruggedness rating.

No. The repetitive avalanche ratings are lower than the single pulse rating. Refer to the product data sheet for the device capability. Refer to AN10273 Power MOSFET single-shot and repetitive avalanche ruggedness rating.

The device can sustain small amounts of damage with each avalanche event and over time they can accumulate to cause significant parametric shifts or device failure. Nexperia has performed research into this area and provides the repetitive ratings in the data sheet. See also Nexperia Application Note AN10273 Power MOSFET single-shot and repetitive avalanche ruggedness rating.

There are two failure modes: current (parasitic BJT turn-on) and thermal. Cell density has implications for these failure modes.

Example - A device has an avalanche event once in two months so how many cycles of such an avalanche frequency can the device sustain? This question relates more to quality and reliability but it is important nonetheless.

For the answer to this question, refer to Section 2.4.3 of AN11158 and all of AN10273.

The current specified in the avalanche graph should not be exceeded. It is restricted to the DC rated current. The device factory test defines the limit which is guaranteed for the device.

The avalanche rating is modeled first and the results are then verified by testing to destruction. The test circuit used is similar to the one defined in JESD24-5. For SPICE modeling, the reverse diode characteristics can be defined and modeled. By adding an RC thermal model of the Zth characteristic, it is possible to estimate the Tj of the device.

The repetitive line is the line for a start temperature of 170 °C. It is because it predicts a temperature rise of 5 °C which is the maximum permissible rise from any starting temperature (see AN10273). It also corresponds to 10 % of the single-shot current using the same inductor value.

The capacitive dV/dt turn-on is strongly circuit dependent.

If the dV/dt across the MOSFETs drain to source is too high, it may charge CGD, which is the capacitance between drain and gate, inducing a voltage at the gate. The gate voltage depends on the pull-down resistor of the driver based on Equation (4).

In some bipolar drive circuits, such as emitter follower derived circuits, the problem is increased. It is because the driver cannot pull the gate down to 0 V and has approximately 0.7 V offset.

It is also important that the driver is referenced to the MOSFET source and not to signal ground, which can be significantly different in voltage.

The ratio of CGD to CGS is a factor but a good drive circuit is the critical factor.

Even if a VGS spike is present, it is safe for the MOSFET as long as the dissipation is within thermal limits and MOSFET SOA limits.

Nexperia MOSFETs are designed with a high threshold at high temperatures and we check VGS threshold at 25 °C is within data sheet limits. Logic level devices are designed and guaranteed to have a minimum threshold voltage >0.5 V even at 175 °C.

It is usually measured in a half-bridge test circuit. It is a measure of the device dV/dt during body diode reverse recovery. This data is not normally published in the data sheet. This dV/dt is in practice the highest dV/dt the device experiences.

High dV/dt can induce glitches onto the gate of the MOSFET. A snubber can help to reduce dV/dt and the magnitude of the VDS spike if significant. The ratio of Coss at low VDS compared to Coss value at high VDS is an indicator of the non-linearity of Coss. A very high ratio can indicate that the device can generate a high dV/dt. Gate driver circuit design can reduce the gate glitch. The ratio of QGD to QGS and the gate threshold voltage can be used to indicate the susceptibility of the device to gate glitches.

Soft recovery does reduce the dV/dt. Although dV/dt is not an issue for the MOSFET, a lower dV/dt is better for EMI, voltage spikes and crosstalk. The design and manufacture is very specialized, involving proprietary information.

At high temperatures, it is easier to trigger a parasitic bipolar as its VBE reduces. But if the BJT is effectively shorted out and current diverted away from it, then it is not an issue.

The aim is to obtain a dV/dt value to check if parasitic BJT turns on, leading to device failure. It is impossible to measure the characteristics of the parasitic bipolar transistor as its terminals cannot be accessed independently of the MOSFET terminals. A parasitic bipolar transistor is always created when a MOSFET is fabricated.

It is sometimes referred to as gate bounce. MOSFETs have internal stray capacitances coupling all three terminals and the gate is floating. The capacitors are inherent to the internal structure of a MOSFET.

CGD and CGS form a capacitive potential divider. When a voltage appears across the drain and source of the MOSFET, it couples to the gate and causes the internal gate source capacitor to charge. If the voltage on the gate increases beyond the MOSFET's threshold voltage, it starts to turn back on which can cause cross conduction. The ratio of the capacitances CGD and CGS determines the severity of this effect.

If improved thermal resistance is required, vias can be added to the footprint. The effect of adding vias is discussed in Section 3.5 of AN10874.

We do not perform any HV isolation tests on any automotive MOSFETs or specify any HV isolation parameter in our data sheets. Insulation testing is only applicable to TO-220F packages (Nexperia SOT186A)

Environmental conditions: 4-layer FR4 board at 105 °C ambient temperature.

Although it is possible to reduce efficiency, other factors become the constraints.

There is a strong similarity between the data sheet characteristics and the Nexperia SPICE models at 25 °C. It is especially true for transfer curve, RDS(on), diode characteristic, and gate charge. The SPICE model also accounts for the package parasitic resistances and inductances.

The SPICE models provided by Nexperia are generated from measurements performed on a sample of devices. Several parameters such as transfer characteristics, output characteristics

and gate charge are used. Values for parasitic package impedances and the data sheet maximum RDS(on) value are combined to produce a model that emulates the behavior of the sample MOSFETs.

  • It is important to note that the SPICE models generated by Nexperia:
    • represent typical parts that can be found within the production distribution.
    • are set close to the maximum RDS(on) of the part without adversely affecting the other model parameters.
    • are only valid for Tj = 25 °C.

Customers wishing to do design validation using a SPICE model, are advised to proceed with caution given the information provided above. Nexperia encourages designers to perform Monte Carlo simulations and use tolerance stacks in their simulation design. These factors permit part to part variation of their whole system to be accounted for.

Nexperia can advise on what reasonable levels of tolerance on key parameters for the MOSFET would be.

Drift engineering is optimizing of the drift region between the bottom of the trench and the epi/ substrate interface (light green area). The drift region supports most of the drain-source voltage in the off state. The purpose of drift engineering is to reduce the resistance of the drift region while maintaining the drain-source breakdown voltage V(BR)DSS capability.

Reduced cell pitch generally results in lower resistance and higher capacitance. The goal of each new generation of MOSFET technology is to reduce RDS(on) without a large increase in capacitance that usually accompanies reduced cell pitch. Reduced cell pitch also reduces SOA capability (linear mode operation) but improves avalanche capability.

Shorter channel gives a lower RDS(on) and a lower CGS capacitance simultaneously. It has higher leakage current and the transfer curve (ID versus VGS characteristic) becomes more dependent on VDS. It is also observed in the output characteristics.

Thick bottom oxide refers to gate oxide at the bottom of the trench. It is made thicker than the gate oxide at the side of the trench. It acts as a thicker dielectric between the gate and the drain resulting in a much lower CGD value.

Nexperia continues to supply older products where the volumes of manufacture are economically viable. The sales price margin is commercially viable and there are no manufacturing reasons which prevent manufacture.

A Discontinuation of Delivery (DoD) document notifies key customers (including distributors), when a part is planned to be withdrawn. It allows customers to make arrangements to buy sufficient products for future requirements and if necessary qualify alternative products.

We have a detailed application note on this subject, AN90011, please refer to this for any EMC related concerns.

The key parameters are the gate oxide breakdown voltage and the gate input capacitance (Ciss). JESD22-A114 specifies the ESD Human Body Model test arrangement and results assessment criteria.

This formula estimates the ESD capability:

Vesd (HBM) = 16 × VGS(max) × Ciss (nF)

Yes. The ESD rating relies upon Ciss and gate oxide breakdown voltage. As Nexperia improves technology and the levels of quality and reliability also improve new generations tend to have stronger gate oxides. However as we improve our switching figure of merit (QG × RDS(on)), now for the same RDS(on) new technologies will have lower Ciss and therefore lower ESD rating.

In order to effectively screen MOSFETs with weak gate oxide and achieve <1 ppm quality levels, Nexperia uses special test techniques which involve accurately measuring the gate-source leakage behavior. Adding ESD protection networks means that it becomes very difficult to measure the gate-source leakage characteristics of the gate oxide because the ESD protection network will have a significantly higher leakage current. This means we cannot screen out weaker oxides and will result in a higher field failure rates. Furthermore, adding protection networks results in higher production costs. ESD protection networks are therefore only used where necessary.

Generally, for larger MOSFETs with good gate oxide quality and relatively high Ciss there is no need for ESD protection, as long as these are being mounted onto a PCB in a controlled ESD environment. For special applications where the MOSFET would be subjected directly to ESD in a finished product such as a lithium ion battery module or a power or signal port then on-chip ESD protection may be required to meet IEC 61000-4-2 or other ESD test specifications. Some very small MOSFETs from Nexperia may require on chip ESD protection networks in order to allow handling (such as NX3008NBKW), even in well controlled manufacturing environments.

The fundamental relationship between drain leakage current and temperature is exponential in form. The data sheet gives maximum values of IDSS at Tj = 25 °C and 175 °C.

Although these two parameters reference the voltage rating of the part, they look at different characteristics of the product. Drain leakage current (IDSS) is the current which flows when VDS equal to the rated voltage is applied. The test checks that the current is below the limit.

The breakdown voltage of a device V(BR)DSS is the VDS required to cause a drain current of 250 μA to flow. In practice it is slightly higher than the rated voltage of the device and the actual voltage varies for the same nominal type due to manufacturing variations. The minimum V(BR)DSS stated in the data sheet is the rated voltage. Breakdown voltage looks at the characteristic of the part when it is in avalanche. The mechanisms causing leakage current and avalanche current are different.

Nexperia has a high degree of confidence that this scenario would be OK even in the worst case. However, it cannot be 100 % guaranteed by a production test at 25 °C.

The following principle could be applied to any Nexperia MOSFET technology at any breakdown voltage rating. In the data sheet, the values for minimum drain-source breakdown voltages are specified at -55 °C and 25 °C. The correlation between V(BR)DSS and temperature is approximately linear over this range. Therefore, a straight line can be plotted at Temperature (-55 °C and 25 °C) versus V(BR)DSS (at -55 °C and 25 °C).

For example: a 40 V Trench generation 6 part, has a V(BR)DSS at -55 °C of 36 V and 40 V at 25 °C. Using linear interpolation, gives a V(BR)DSS of 36.75 V at -40 °C.

Unfortunately, Nexperia cannot supply values for these capacitances at the extremes of the MOSFET operating temperature range requested. It is due to the limitations of our parametric test equipment. However, we can comment on how these capacitances vary with temperature and the MOSFET terminal voltages.

Ciss is the input capacitance formed by the parallel combination of CGS and CGD, and  CGS dominates. CGS is formed across the gate oxide so it does not vary significantly with

temperature or the MOSFET terminal voltages. As CGS depends on gate oxide thickness and other defined die feature dimensions, it should not vary much between samples.

Crss is the reverse transfer capacitance which is essentially the gate-drain capacitance (CGD).  It is formed across the MOSFET body diode depletion layer. This layer becomes thicker, as the reverse voltage (VDS) across it increases. Crss increases as VDS decreases. Crss has a greater variability than Ciss because it depends on the body diode depletion layer.

Coss is the output capacitance formed by the parallel combination of CDS and CGD. The drain- source capacitance (CDS) also dominates this capacitance. It varies with VDS in a similar way to Crss varying with VDS and it has similar variability to Crss for the same reasons.

It has been observed that switching losses only slightly increase at Tj(max), in the order of 10 %, since the capacitances only marginally change. Other factors can influence switching behavior, especially where the gate driver current capability changes significantly with temperature. The depletion layer thickness varies in proportion to the square root of the absolute temperature in K and it affects Crss and Coss.

The measured RG value is in the range of 1 Ω to 3 Ω and it does not vary significantly with temperature. In our general MOSFET characterization, it is presently not possible to test RG over the temperature range.

The minimum current that is expected at a VDS of 0.1 V can be calculated from the maximum (175 °C) RDS(on) value (26 mΩ).

The drain current that flows with these conditions is 0.1/0.026 = 3.846 A. The maximum die temperature is the critical factor. Do not allow it to exceed 175 °C.

However, if the RDS(on) is not at the top limit of the value range or the die temperature is lower, it is lower. As a result, the corresponding drain current is proportionately higher.

The maximum RDSon is 11.5 mΩ at Tmb = 25 °C. The maximum die temperature is likely to be higher than 25 °C in most applications.

If the mounting base temperature is maintained at 100 °C or less, the (fully ON) MOSFET can safely carry a continuous current up to 35 A.

The (fully ON) MOSFET can also sustain a current pulse of 204 A for a period up to 10 μs.

The ratings given on the data sheet are for each individual MOSFET in this device.

Although there are two MOSFETs housed within the package, they are fully electrically isolated from each other.

However, as the MOSFETs share a common package, there is a small amount of thermal coupling between the two MOSFET dies through the plastic package material. The heat generated by the power dissipated in one MOSFET increases the temperature of the other, even though the other may not be dissipating power. In an application, there is also an external thermal coupling path via the PCB to which the device is mounted. In practice, it is the main thermal coupling mechanism between the two dies.

To guarantee long-term reliability, it is very important that the junction temperature of either of the dies is never allowed to exceed 175 °C.

The individual MOSFET mounting bases are the main exit routes for heat generated in the dies. In practice, the mounting bases are soldered to copper pads on a Printed-Circuit Board (PCB). They provide the electrical connections to the MOSFET drains and heat sinking. Both MOSFETs in the package should operate at their rated power/current when their mounting bases are maintained at 25 °C. However, it is very difficult to achieve in practice and de-rating must be done in most cases.

Data from a T9 MOSFET family device BUK7J1R4-40H is considered but the principle can be applied to T6 devices also. The plateau voltage in the gate charge characteristic is the horizontal portion of the Gate-source voltage as a function of gate charge graph (see Fig 13. in datasheet); and is related to the transfer characteristic (Fig. 8).

The plateau voltage is around 4.25 V typical for a current of 25 A. This corresponds to the value in the transfer curve, also for a typical device. So at -55 °C then the plateau voltage will be 4.35 V and at 175 °C it will be 3.9 V for a typical device.

When considering a “worst case” device then the spread in gate threshold VGS(th) needs to be considered. It is assumed that the gain (transconductance) of the device is not affected by the same process related reasons which affect VGS(th). The transfer curve for a typical device would be shifted along the VGS axis according to the delta in the VGS(th).

The plateau voltage at the 25 A test condition would be 3.65 V for minimum VGS(th) and 4.85 V maximum VGS(th).

Consider a specific example such as BUK9K52-60E. See table 1 in the datasheet for capability.

The key point is the Ptot of 32 W. This is per die at data sheet conditions which assume that the mounting base is maintained at 25 °C. The maximum DC current allowed in each device would be

16.04 A, based on RDSon of 124.3 mΩ (VGS= 5 V) at 175 °C.

If both devices in the package are considered then the total power dissipation when both mounting bases are maintained at 25 °C is 32 W x 2 = 64 W. This only applies when the mounting bases of the devices are maintained at 25 °C (using an infinite heatsink). The power capability will decrease as the mounting base temperatures increase such that Tj does not exceed 175 °C. Consequently the current will decrease as shown in the Fig 2 in datasheet of ID vs Tmb, if the mounting base is maintained at a different temperature such as 125 °C, the current rating would be 9.26 A.

FIT (Failure In Time) is commonly used to express component reliability. It is defined as the number of failures occurring in 1 × 1000000000 hours (1 billion hours).

At any elapsed time (t), the reliability (R) of a group of operating semiconductors is: R(t) = (no - nf)/no

Where:

no is the original sample size and nf is the number of failures after time t.

Over the standard time of 10^9 hours, it approximates to F = (1/no)*(nf/t)*1000000000.

交叉參考

91免费精品国产拍在线| 亚州欧美大鸡巴操肥逼逼| 日韩精品女性三级视频| 久久a天堂av福利免费播放| 国产精品久久久精品免费| 国产av自拍日韩高av| 香蕉成人伊视频在线观看| 久久亚洲精品成人在线| 国产性色av一区二区| 日本黄色一区二区三区| 精品国产高清中文字幕| 国产精品午夜久久久久久久密桃 | 亚洲av日韩av高清在线播放| 性刺激特黄毛片免费视频 | 人与禽交免费视频在线观看| 天天操亚洲精品日韩欧美| 久久这里只有偷拍精品视频| 欧美日韩一区二区成人在线| 国产99久久精品一区二区300| 久久久久久精品国产一区| 日韩黄片毛片在线观看| 精品久久久久久中文字幕网 | 大屁股迷人少妇在线观看| 亚洲精品精品日本日本| 国产黄色性生活一级片| 国产精品一区二区三区欧美| 米奇8888在线精品视频| 午夜亚洲精品中文字幕| 麻豆国产成人AV高清在线观看| jk黑丝白丝国产精品| 久久香蕉国产线看观看6| 国产精品我不卡在线观看| 国产av天堂久久精品| 高清一区二区中文字幕| 欧美熟妇另娄久久久久久| 国产精品熟女自拍视频| 亚洲av毛片免费观看| 日韩在线观看免费av| 毛片内射一区二区三区| 色橹橹欧美在线观看视频高清免费| 国产日韩欧美另类专区| 激情文学婷婷六月开心久久 | 人妻内射一区二区在线视| 淫荡女人水嫩嫩逼爆肏视频| 最新精品亚洲成a人在线观看| 懂色av免费在线播放| 性刺激特黄毛片免费视频| av天堂午夜在线观看| 国产精品区第二页尤自在拍| 色综合久久久久久久激情| 国产日韩欧美亚洲另类| 久久天天躁狠狠躁夜夜婷 | 大鸡巴厂长狂操女人的无毛小逼| 91精品人妻一区二区蜜桃| 日韩特黄特色大片免费看| 97精品在线视频播放| 毛片内射一区二区三区| 日本人妻免费在线观看| 国产在线乱码一区二区三区潮浪| 欧美成人动漫免费在线观看| 亚洲欧美日韩欧美一区二区三区| 99久久精品国产成人综合| 亚洲人尤物视频在线观看| av午夜精品一区二区三区| 国产精品人成在线播放 | 国产黄色网页在线观看| 日本人疯狂干大鸡巴爽歪歪视频| 欧美91精品一区二区三区| 国产乱码精品一区二区三区播放| 极品人妻手机视频在线| 亚洲欧洲av午夜精品| 精品一区二区日本视频| 日本五十路熟女啪啪啪| 亚洲嫩模三级片中文字幕| 操小逼流白浆日韩免费小视频| 性感骚女爆射搞基喷水操软件下载| 亚洲国产精品一区二区三区四区| 扒开老女毛荫荫的黑森林视频| 国产又黄又爽又粗的视频在线观看| 先锋影音在线资源91| 波多野结衣AV在线无码播放| 亚洲日韩精品欧美一区二区三区| av天堂天堂av日韩| 91豆麻精品91久久久久久| 绝顶人妻中文字幕精品一区| 男人用力插美女下面的视频| 在线播放国产精品口爆| 美女国产黄色三级片在线播放| 久久精品人妻少妇区二区| 日本视频一区二区三区观看| 亚洲熟女乱一区二区精品成人| 综合激情五月三开心五月| jk黑丝白丝国产精品| 亚洲人人妻人人爽av| 国产激情一区二区激情| 天天操操夜夜操97| 久久亚洲天堂av丁香| 日本到在线高清视频观看| 成年女人午夜毛片免费视频| 亚洲99精品一区二区三区| 四房色播五月天婷婷丁香| 欧美日韩国产福利在线观看| 久久天天躁狠狠躁夜夜婷 | 成年美女黄网站大片免费| 91中文字幕一区二区| 日韩欧美黄片在线播放| 欧美一区二区三区裸体| 男人大丁丁射精AV汇编| 国产精品久久久久9999不卡| 国产免费观看黄av片试看| 性感骚女爆射搞基喷水操软件下载| 亚洲人人妻人人爽av| 亚洲一区二区三区中文| 伊人成人在线高清视频| 国产在线观看一区二区三| 国产av自拍日韩高av| 精品自拍视频国产免费自拍视频 | 三级电影在线观看不卡| 国产日韩精品专区免费| 亚洲精品制服丝袜中文字幕乱码| 在线免费看黄国产精品| 日韩精品av在线观看| 男生用鸡鸡捅女生屁股免费视频| 欧美A极v片亚洲A极v片| 免费99精品国产自在现线丫| 国产人妻久久精品二区三| 国产精品系列在线播放| 老頭搡老女人毛片視頻在錢看| 香蕉成人伊视频在线观看| 成年大片在线免费播放 | 日本熟妇内射一区二区| 美女脱光衣服露出奶头和尿头吊嗨| 男人插女人鸡在线污视频观看| 丝袜美腿亚洲一区二区| 神马午夜伦理精品亚洲| 四虎永久在线精品视频观看| 国产精品高清在线播放| 欧美日韩国产一区二区的| 无码系列久久久人妻无码系列| 男生把坤巴放进女生屁屁| 男生把坤坤戳进女生阴道里的视频| 香港三日本三韩国三欧美三级| 美女白虎穴内射喷水视频在线观看| 久久精品 国产精品香蕉| 中文字幕国产不卡一区| 亚洲和欧美一区二区三区| 情激情综合亚洲欧美专区| 97精品视频在线观看| 亚洲同性男男GV在线观看 | 欧美三级经典影片视频| 国产精品我不卡在线观看| 亚洲精品一区二区毛豆| 人妻中文字幕有码在线视频| 日韩精品一区二区三区视频放| 97精品在线视频播放| 国产亚洲一区二区三区精品久久| 日本高清视频不卡一区二区| 加勒比一道本在线观看| 九九热最新免费在线观看| 亚洲毛片成人在线观看| 欧美精品午夜福利不卡| 动态强干叉美女小穴视频| 操逼操逼操逼操逼操逼操逼!!!| 四虎国产永久免费视频| 午夜伦理激情福利视频| 性感骚女爆射搞基喷水操软件下载| 中文字幕亚洲欧美日韩在线不卡| 日韩情色电影中文字幕| 国产中文字幕日韩精品| 免费成人在线不卡视频| 大鸡巴操女生视频男上女下式黑人| 精品国精品国产av自在久国产| 在线不卡视频国产观看| 婷婷精品国产一区二区| 久久久久久久久久久久性高潮| 日本免费一区二区三区视频在线播放| 成人两性生活免费视频| 亚洲欧美另类日韩精品| 国产精品高清在线播放| 又粗又长鸡巴插进极品美女逼逼里| 国产爽又爽视频在线观看| 欧美日韩综合不卡一区二区三区 | 欧美91精品一区二区三区| 啊我要吃大鸡巴 插到骚逼里好大| 成人午夜视频在线喷水| 午夜99精品一区二区三区| 中文字幕在线av电影| 亚洲精品中文有码字幕| 麻豆回家视频区一区二| 久久a天堂av福利免费播放| 操小逼流白浆日韩免费小视频| 18精品久久久无码午夜福利| 国产综合色在线视频观看| 日日摸夜夜添夜夜添日韩| 看日逼的看日逼的看日逼的看日逼 | 大鸡插黄在床上做运动不遮掩| 蜜桃免费视频在这里看| 情产国品久久久久久久9999 | 国产欧美精品久久99亚洲| 日本五十路熟女啪啪啪| 赿南美女拳交操逼视频大片| 日韩欧美三级影片在线观看| 中文字幕中文有码在线| 亚洲男人天堂在线免费| 日韩亚洲人妻一区二区| 超碰插你激情免费在线| 免费 无码 国产在线观| 免费国产国语一级特黄aa大片 | 夫妻性生活视频在线免费看| 操逼操逼操逼操逼操逼操逼!!!| 国产在线乱码一区二区三区潮浪| 淫荡小骚逼想要大肉棒视频 | 久久免费偷拍视频看看| 天天操天天干五月婷婷热| 哺乳一区二区久久久免费| 午夜天堂精品一区二区| 国产精品成人久久综合| 性夜国产夜春夜夜爽三级| 国产午夜福利在线观看红色一片天| 七月婷婷精品视频在线观看| 美女主播视频福利一区二区| 欧美日韩免费r在线视频| 老女人黄色性生活高清版| 国内精品久久人妻白浆| 国产蜜臀大码av影院| 天天操夜夜一操免费看| 国产黄片一级二级三级| 韩国免费A级毛片久久不卡片| 好好热精品视频在线观看| 久久综合亚洲一二三区| 丰满美女性爱在线视频看看| 久久精品中文字幕一二三 | 大鸡巴插进小穴的视频吴梦梦| 国产亚洲精品成人av一区| 国产精品午夜一区二区三区四区| 好吊视频免费在线观看| 国产成人无码区免费AV片蜜臀| 免费成人在线不卡视频| 亚洲99精品一区二区三区| 人妻久久久一区二区三区视频| 欧美日韩欧美性生活视频| 无情的大屌操骚穴的视频| 国产中文字幕在线免费观看 | 国产精品91福利一区二区三区| 中文字幕在线av电影| 草草影院黄色在线观看| 能看美女逼的网页免费看| 成人午夜福利视频网址| 久久蜜臀一区二区三区av| 精品国产尤物黑料在线观看| 正在播放干熟妇久久精品视频一本 | 高清一区二区中文字幕| 色偷偷人人澡久久超碰91蜜臀| 高清女厕偷拍一区二区三区| 成人免费淫片在线观看免费| 国产亚洲精品免费专线视频| 色欲天综合久久久无码网中文| 久久亚洲出白浆无码国产| 18禁看一区二区三区| 欧美日韩亚洲重口另类| 久久亚洲出白浆无码国产| 亚洲最大色大成人av| 激情毛片av在线免费看| 操 骚逼 骚逼 操骚逼 操骚逼| 国内精品久久久久久一区二区| 在线观看日本一区二区三区四区| 国产精品区第二页尤自在拍| 中文字幕 乱码 中文乱码视频| 色帝国综合综社区偷拍| 动态强干叉美女小穴视频| 亚洲五月婷婷中文字幕| 深夜欧美福利在线视频| 18禁看一区二区三区| 国产农村av对白观看| 卡通动漫一区二区综合| 操逼内射女生免费视频黄片| 在线日韩人妻高清在线| 男人和女人插插视频免费看 | 国产麻豆剧传媒免费观看| 日本不卡二区在线观看| 日本肥老熟妇在线观看| 亚洲精品黄网在线观看| 亚洲日本一线产区二线区| 免费在线观看国产不卡| 中文av岛国无码免费播放| 日本五十路熟女啪啪啪| 青草精品视频在线播放| 国产在线观看码高清视频| 中文字幕在线观看欧美日韩| 亚洲男人天堂在线免费| 欧美精品国产成人综合亚洲| 精品国产av一区二区三区蜜臀| 麻豆精品人妻一区二区三区99 | 欧美精品久久久天堂一区| 亚洲色图视频中文字幕| 美女大奶子大鸡巴操逼喷水| 91精品久久久老熟女九色9| 波兰中年妇女B操B视频| 国产肥熟女老太老妇A片| 在线观看一区二区三区亚洲| 日本高清视频不卡一区二区 | 国产免费啪嗒啪嗒视频看看| 日本黄色一区二区三区| 强奷漂亮的夫上司犯在线观看| 国产午夜精品一区理论片| 小骚货被打桩啊啊骚叫视频网页| 中文字幕日本人妻束缚视频| 看男生和女生插小鸡鸡的软件| 欧美成人三区四区在线观看| 亚洲精品国产欧美成人| 未满十八禁止在线播放| 女生尿洞被男生捅的视频| 男人的天堂av免费社区| 黑人精品一区二区三区av| 中文字幕在线观看欧美日韩| 中文字幕人妻高清乱码| 久久精品亚洲国产日韩| 小伙子狂暴大奶子美女逼 | 日韩毛片资源在线观看| 欧美精品午夜福利不卡| 成年女人午夜毛片免费视频| 欧美成人三区四区在线观看| 欧美日高清视频在线观看| 亚洲欧美在线视频第一区第二区| 美国黑人大屌操白美女小逼逼| 亚洲av日韩av天堂无码| 大鸡吧插没毛的骚逼诱惑视频| 中国一级毛片免费看视频| 国产一二三在线不卡视频| 国产真实乱免费高清视频 | 国产美女极度色诱视频| 欧美三级经典影片视频| 国产成人欧美一区二区三区的 | 在线免费看黄国产精品| 亚洲美女一区二区暴力吞精| 日韩女优日逼视频粉嫩开包| 人妻人人澡人人添人人爽桃色| 亚VA芒果乱码一二三四区别| 日本在线有码中文视频| 日本一区二区免费在线不卡| 国产精品成人自拍视频| 日本到在线高清视频观看| 亚洲av永久无码青青草原 | 黄色顶级男和女性视频毛视频 | 国产爽又爽视频在线观看| 欧美日韩中文亚洲v在线综合| 加勒比东京热综合区一区二| 大鸡吧操我纸牌视频啊啊啊| 一起草视频网站在线播放| av日韩精品在线观看| 99国产成人精品视频app| 91蜜桃臀久久一区二区| 久久免费看美女高潮视频| 97久久精品国产精品青草| 中文字幕乱码十国产乱码| 美女扒开大腿让人桶免费看| 日韩天堂视频在线播放| 好吊妞人成视频在线观看| 男生用鸡鸡捅女生屁股免费视频| 91九色成人在线观看| 国产激情高中生呻吟视频| 国产黄片久久免费观看| 午夜亚洲精品中文字幕| 亚洲婷婷熟妇熟女在线| 日韩精品在线小视频| 天天躁日日躁狠狠躁日日| 午夜宅男在线视频观看| 亚洲大陆免费在线视频| 欧美精品在欧美一区二区三区 | 久草福利资源在线播放| 我爱美女小骚骚的小骚逼| 国产福利一区二区三区| 欧美日韩一级二级三区高清视频| 国产免费成人在线观看视频| 亚洲精品无码专区在线观看| 亚洲香蕉大尺码专区在线直播| 日本高清一区二区三区高清视频| 一区二区三区人妻在线| 9久精品久久综合久久超碰1| 91精品麻豆日日躁夜夜躁| 蜜桃一区二区三区在线| 欧美黄色成人在线电影| 中文人妻无码一区二区三区在线| 呃呃啊啊啊好爽快到了黄色| 9久精品久久综合久久超碰1| 高清一区二区中文字幕| 偷拍偷窥女厕一区二区视频| 亚洲狠狠丁香综合一区| 久久这里只要精品视频| 在线观看中文字幕二区| 久久久久伊人亚洲最大av综合| 极品美女高潮精品16p| 日本高清少妇一区二区三区| 亚洲日本乱码一区二区| 裸体女人啊啊啊啊射了好多人啊 | 亚洲日本国产乱码va在线观看 | 精品日韩一区二区三区| 国产一区二区三区三洲| 欧洲免费无线码在线观看土| 亚洲熟女av一区二区三区| 国产日韩欧美在线视频播放| 一本色道久久亚洲av红楼| 蜜臀av国内精品久久久久久久久| 午夜亚洲精品中文字幕| 91麻豆国产自产在线观看亚洲| 我要大鸡吧在线观看免费| 午夜影院1000在线免费观看| 色综合久久久久综合体| 亚洲av不卡一区二区不卡| 国产亚洲精品久久久久久无| 国产免费成人在线观看视频| 菠萝菠萝蜜在线视频在线播放 | 日韩AV无码免费看久久久| 卡通动漫一区二区综合| 91蜜桃臀久久一区二区| 五月天丁香婷婷一区二区| 色偷偷人人澡久久超碰91蜜臀 | 性夜国产夜春夜夜爽三级| 亚洲AV无码一区二区三区动漫 | 久久久久亚洲av成人网热| 正在播放女子高潮大叫要| 亚洲av日韩av高清在线播放| 性生活免费在线观看视频| 亚洲日本国产乱码va在线观看| 日韩在线一区精品视频漫画| 国产欧美日韩综合精品二区| 亚洲日本乱码一区二区| 国产一区二区三区二区| 午夜福利观看在线观看| 国产精品为爱搞点激情| 国产成人av在线观看| 亚洲最大最粗最猛视频| 久久香蕉国产线看观看6| 男生鸡巴操女生逼逼视频。| 十八禁真人无摭挡观看| 国产另类在线欧美日韩| 91综合在线国产精品| 国产一区二区三区尤物视频| 欧美人妻精品一区二区三区99| 中文字幕人妻熟女人妻av| av日韩免费在线观看| 五月婷婷丁香激情对白一区二区| 五月天丁香啪啪激情综合| 91精品国自产拍老熟女露脸| 人与禽交免费视频在线观看| 欧美视频中文字幕视频日韩视频| 香蕉av秘 一区二区三区| 亲少妇摸少妇和少妇啪啪| 亚洲中文字幕中文在线| 91精品极品在线免费观看| 超大鸡巴操处女小骚逼免费视频| 亚洲免费视频区一区二| 啊啊啊好舒服不要再插了要高潮了| 91国产自拍在线一区| 亚洲av无码乱码国产精000| 亚洲国产精品毛片av在线下载| 公侵犯人妻中文字幕一区| 免费在线观看国产不卡| 男人抚摸亚洲女大学生的大胸| 亚洲中文字幕有码视频| 91免费精品国产拍在线| 激情春色欧美激情国产剧情| 中文字幕日韩精品免费看| 男生大肉捧插女生的视频| 久久久无码精品亚洲日韩18禁| 欲求不满人妻av中文字幕| 一区二区三区欧美影片| 亚洲天堂一区二区免费不卡| 伊人天堂午夜精品草草网| 国产日韩欧美在线视频播放| 亚洲91美女夜夜爱爽爽福利| 亚洲国产精品一区二区三区四区| 国产无遮挡又黄又爽又大| 白嫩美女在线日韩专区| 亚洲国产不卡av在线| 久热这里只有精品视频4| 亚洲国产精品毛片av在线下载| 大鸡巴操大人体逼的视频| 色一情一乱一区二区三区码| 国产精品无码免费一级毛住a| 亚洲综合一区二区三区精品| 国产精品午夜久久久久久久密桃| 日本精品福利在线视频| 亚洲一区精品二人人爽久久| 国产日本亚洲一区二区| 国产亚洲一区二区三区精品久久 | 人妻中文字幕有码在线视频| 视频一区精品中文字幕| 日韩情色电影中文字幕| 国产精品人妻熟女av| 国产视频一区二区三区免费看| 亚洲av无码乱码国产精000| 日本成人午夜福利电影| 日本在线有码中文视频| 亚洲中文字幕无码永久免弗首页 | 高清一区二区中文字幕| 亚洲少妇插进去综合网| 亚洲中文字幕中文在线| 男人大鸡巴插进美女逼里视频强奸 | 日韩推理片2021电影在线观看| 亚洲天堂av在线观看免费| 男人捅开女人的逼国语对白 | 中国一级做a爰片久久毛片| 精品国产福利盛宴在线观看| 伊人久久大香线蕉亚洲日本强| 香蕉成人伊视频在线观看| 国产精品九色蝌蚪自拍| av日韩精品在线观看| 全部免费特黄特色大片看片| 久久精品日本一区三区| 久久精品 国产精品香蕉| 最近日韩精品视频在线| 成人福利在线免费观看视频| 亚洲精品偷拍自综合网| 精品久久久久久久大| 男人猛躁进女人免费播放视频| 极品人妻手机视频在线| 国产三级精品在线不卡| 正在播放国产无套露脸视频| 在线观看男人鸡桶女人的| 免费黄色国产精品日更| 性感骚女爆射搞基喷水操软件下载| 日本女同学在工作里小媳妇操逼逼 | 强插少妇视频一区二区三区 | 日日噜噜噜夜夜噜噜噜| 亚洲国产不卡av在线| 亚洲欧洲日韩另类99在线| 小伙子狂暴大奶子美女逼| 91在线免费在线观看| 久久久久伊人亚洲最大av综合| 亚洲欧洲日韩另类99在线| 免费成人在线不卡视频| 免费 无码 国产在线观| 丰满少妇被猛烈进入无码蜜桃| 午夜福利十八周岁成人| 三级电影在线观看不卡| 免费黄色国产精品日更| 久久香蕉免费国产天天看| 亚洲伊人情人综合网站| 中国一级做a爰片久久毛片| 隔壁人妻bd高清中文字幕| 亚洲av精品一区在线| 货在沙发风骚至极 自摸肥逼勾引| 黑丝视频在线播放91| 黑人巨屌女人操逼视频网| 人妻少妇被猛烈进入中出视频 | 大大大长屌姓交口交观看| 久久精品日本一区三区| 女国产精品视频一区二区三区| 色眯眯日本道色综合久久| 欧美成人综合在线观看视频| 女生尿洞被男生捅的视频| 国产精品午夜久久久久久久密桃| 亚洲香蕉视频综合在线| 黑丝视频在线播放91| 男人下面插入女生下面啊啊啊视频 | 午夜福利宅福利国产精品| 水蜜桃在线精品视频网| 92午夜福利在线视频| 伊人天堂午夜精品草草网| 中文字幕在线av电影| 性刺激特黄毛片免费视频| 日本剧情片在线播放网站| 亚洲熟女乱一区二区精品成人| 免费国产高清在线观看最新| 91午夜精品福利在线亚洲| 中文字幕一区二区三区乱码人妻| 国精产品一品二品国精品| 亚洲欧美在线视频第一区第二区| 日韩爱爱视频在线观看| 亚洲国产精品毛片av在线下载| 丰满少妇被粗大猛烈进人高清| 一卡二卡精品在线免费| 亚洲av伊人久久综合性色| 菠萝菠萝蜜在线视频在线播放| 国产又黄又爽又粗的视频在线观看 | 91免费精品国产拍在线| 国产日韩在线视看高清视频手机| 插日日操天天干天天操天天透| 国产免费观看黄av片试看 | 国产精品有码av在线| 国产一级片大全免费在线播放 | 国产传媒天美av一区二区三区| 国产主播在线一区二区| 欧美精品午夜福利不卡| 国产女人av一级一区二区三区| 中文字幕日韩精品免费看| 欧美成人三区四区在线观看| 国产黄片久久免费观看| 男生操女生小逼爽爽爽看看 | 啊啊啊好舒服不要再插了要高潮了 | 亚洲熟女国产午夜精品| 亚洲精品乱码在线播放| 在线观看一区二区三区亚洲| 国产精品九色蝌蚪自拍| 亚洲国产中文剧情av鲁一鲁| 大屁股迷人少妇在线观看| 亚洲国产精品毛片av在线下载 | 国产精品毛片高清在线完整版| 中文字幕一区二区三区乱码| 中文人妻av一区二区三区| 在线精品国产亚洲av日韩| 无码国内精品人妻少妇蜜桃视频| 99国产欧美久久久精品蜜桃| 欧美二精品二区免费看| 亚洲精品一区二区久久| 男人天堂一区二区av| 男生使劲操女生下面视频国产| 亚洲中文字幕中文在线| 日韩精品av在线观看| 亚洲日本精品熟女视频| 成年免费A级毛片天天看| 大奶女人被操逼操的崩溃| 这里都是精品熟女内射| 国产精品人妻熟女av| 无遮挡18禁啪啪羞羞漫画| 搜索黑人性欧美大战久久| 日本人疯狂干大鸡巴爽歪歪视频 | 深夜福利一区二区三区欧美| 日韩精品无乱一区二区| 男女性情视频免费网站| 国产精品青青爽在线观看| 加勒比东京热综合区一区二| 一本到在线观看免费收看| 欧美美女真人全裸外阴大阴口日逼| 三级电影在线观看不卡| 日韩欧美一级精品久久| 色欲永久无码精品一二三区| 男人把鸡鸡捅进美女屁骨里| 国产欧美日韩一区精品| 亚洲三级成人一区在线| 鸡鸡插屁股视频日韩在线免费观看 | 久久精品亚洲国产日韩| 美女扒开大腿让人桶免费看| 大肉棒猛插小逼太爽了视频| 国产91精品系列在线观看| 青春无码三级视频在线播放 | 午夜天堂精品一区二区| 男人和女人插插视频免费看| 无码a级毛片免費视频内谢| 情激情综合亚洲欧美专区| 成年美女黄网站大片免费| 好吊视频免费在线观看| 国产精品成人av高清在线观看 | 女自慰喷水大学生高清免费看| 亚洲av日韩av天堂无码| 国产精品区第二页尤自在拍| 91福利区一区二区三区| 99热精品在线观看首页| 99热这里只有精品网站| 亚洲大尺度无码无码专线一区| 日韩在线中文字幕三区| 一区二区三区激情在线观看 | 亚洲精品中文有码字幕| 成人午夜福利视频网址| 亚洲精品一区二区久久| 黄色av网站一区二区三区| 不卡久久精品国产亚洲av不卡| 中文人妻av一区二区三区| 一区二区三区在线观看日本| 91中文字幕国产精品| 日韩精品无乱一区二区| 久久久亚洲国产精品一区| 99热这里只有是精品7| 91国产自拍在线一区| 午夜亚洲精品中文字幕| 亚洲欧美日韩偷拍丝袜| 欧美一区二区三区爽爽爽| 女性下体被男性猛进猛出的视频| 91男厕偷拍男厕偷拍高清| 久久偷拍情侣激情视频| 国产黄片久久免费观看| 日韩精品视频观看专区| 波多野结衣AV在线无码播放 | 亚洲一区二区懂色av| 国内揄拍国内精品少妇国语麻豆| 啊啊草死我爽日本在线观看| 国内揄拍国内精品少妇国语麻豆| 在线亚洲91成人在线视频视频| 18出禁止看的色视频| 人妻在线有码中文字幕| 中文字幕人妻少妇久久| 国产黄片一级二级三级| 日韩精品毛片在线看| 国产 中文字幕 欧美 日韩| 国产真实乱免费高清视频 | 国产日韩人av在线播放| 男女鸡巴插黄激情视频欧美| 伊人久久大香线蕉亚洲日本强| 人妻中文av无码字幕久久| 淫妇小穴好爽啊出水视频| 香港三级日本三级五月婷| 中文字幕一区二区人妻秘书| 野花视频在线观看免费高清版| 男生用鸡鸡捅女生屁股免费视频 | 中文字幕激情av电影| 久久久精品欧美中文一区二区三区| 青青草青青草在线观看视频| 男女互射视频在线观看| 日韩一区二区三区东京热 | 人妻少妇精品中文字幕av蜜桃| 亚洲一区二区二区久久成人婷婷| 高清日韩久久久一区二区| 在线观国产精品日韩av| 色综合久久久久久久粉嫩| 国产内射一级一片高清视频蘑菇 | 男人操女人嗷嗷叫的视频| 操爆白皙美女下面的骚逼视频| 日韩一区二区在线精品| 麻豆精品人妻一区二区三区99| 国产精品久久久久精品三级下载 | 国产又猛又黄又爽无遮挡| 蜜桃免费视频在这里看| 久久久人妻国产精品一区 | 春色在线观看中文字幕91| 久久免费视频久久免费视频99 | 成人三级在线播放线观看| 亚洲婷婷熟妇熟女在线| 在线免费看片国产精品| 久久精品无码一级毛片温泉| 偷拍偷窥女厕一区二区视频 | 情产国品久久久久久久9999| 色婷婷亚洲一区二区在线| 成人国产亚洲欧美日韩| 最新av国产在线播放| 国产黄片久久免费观看| 久久综合九色综合色多多| 亚洲欧洲日韩另类99在线| 欧美日韩视频在线综合| 999久久久久国产精品麻豆| 大鸡巴操大人体逼的视频| 欧美日韩精品在线观看| 亚洲一区精品二人人爽久久| 欧洲日韩国产一区二区| 骚货操死你捅死你骚逼视频| 日韩亚洲在线观看视频| 亚洲日本精品熟女视频| 国产日韩一区二区不卡视频 | 97视频精品免费观看| 中文字幕中文字幕乱码| 又黄又爽有无遮挡的网站| 日韩成人福利在线视频| 99热这里只有是精品7| 99久久婷婷国产综合精品免费 | 日韩av在线播放免费观看| 欧美日韩艺术电影在线| 久久精品中文字幕人妻中文| 91人人妻人人澡人人爽秒播| 亚洲人人妻人人爽av| 欧美日韩一级二级三区高清视频| 黑人巨大精品欧美完整版| 久久99精品久久久久久手机免费 | 免费日韩av网在线观看| 美女扒开大腿让男生捅高潮的视频| 午夜福利十八周岁成人| 亚洲综合一区二区三区精品| 男人天堂一区二区av| 亚洲欧美国产专区在线观看| 午夜99精品一区二区三区| 男人天堂一区二区av| 在线精品国产亚洲av日韩| 欧美日韩午夜在线一区| 丝袜美腿福利一区二区| 日韩在线观看免费av|